|
|
@@ -529,6 +529,8 @@ class Model:
|
|
|
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
|
|
added_vocab = tokenizer.get_added_vocab()
|
|
|
|
|
|
+ added_tokens_decoder = tokenizer.added_tokens_decoder
|
|
|
+
|
|
|
for i in range(vocab_size):
|
|
|
if i not in reverse_vocab:
|
|
|
tokens.append(f"[PAD{i}]")
|
|
|
@@ -538,13 +540,13 @@ class Model:
|
|
|
if token in added_vocab:
|
|
|
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
|
|
|
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
|
|
|
- if not tokenizer.added_tokens_decoder[i].normalized:
|
|
|
+ if not added_tokens_decoder[i].normalized:
|
|
|
previous_token = token
|
|
|
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
|
|
|
if previous_token != token:
|
|
|
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
|
|
|
|
|
|
- if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
|
|
+ if added_tokens_decoder[i].special or self.does_token_look_special(token):
|
|
|
toktypes.append(gguf.TokenType.CONTROL)
|
|
|
else:
|
|
|
# NOTE: this was added for Gemma.
|