|
|
@@ -351,6 +351,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_program program_gemv_noshuffle_general;
|
|
|
cl_program program_gemv_noshuffle;
|
|
|
cl_program program_get_rows;
|
|
|
+ cl_program program_glu;
|
|
|
cl_program program_im2col_f16;
|
|
|
cl_program program_im2col_f32;
|
|
|
cl_program program_mul_mat_Ab_Bi_8x4;
|
|
|
@@ -401,6 +402,8 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_relu;
|
|
|
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
|
|
|
cl_kernel kernel_clamp;
|
|
|
+ cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu,
|
|
|
+ kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16;
|
|
|
cl_kernel kernel_norm;
|
|
|
cl_kernel kernel_rms_norm;
|
|
|
cl_kernel kernel_group_norm;
|
|
|
@@ -738,6 +741,27 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
GGML_LOG_CONT(".");
|
|
|
}
|
|
|
|
|
|
+ // glu
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "glu.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("glu.cl");
|
|
|
+#endif
|
|
|
+ backend_ctx->program_glu =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
// get_rows
|
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
@@ -2242,6 +2266,15 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|
|
default:
|
|
|
return false;
|
|
|
}
|
|
|
+ case GGML_OP_GLU:
|
|
|
+ switch (ggml_get_glu_op(op)) {
|
|
|
+ case GGML_GLU_OP_GEGLU:
|
|
|
+ case GGML_GLU_OP_REGLU:
|
|
|
+ case GGML_GLU_OP_SWIGLU:
|
|
|
+ return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
|
|
|
+ default:
|
|
|
+ return false;
|
|
|
+ }
|
|
|
case GGML_OP_CLAMP:
|
|
|
return op->src[0]->type == GGML_TYPE_F32;
|
|
|
case GGML_OP_SOFT_MAX:
|
|
|
@@ -6143,6 +6176,91 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
|
|
|
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
|
|
}
|
|
|
|
|
|
+static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ GGML_ASSERT(src0);
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
+ GGML_ASSERT(dst);
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
+
|
|
|
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
+
|
|
|
+ if (src1) {
|
|
|
+ GGML_ASSERT(src1);
|
|
|
+ GGML_ASSERT(src1->extra);
|
|
|
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ cl_kernel kernel;
|
|
|
+ switch (ggml_get_glu_op(dst)) {
|
|
|
+ case GGML_GLU_OP_GEGLU:
|
|
|
+ if (dst->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_geglu;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_geglu_f16;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case GGML_GLU_OP_REGLU:
|
|
|
+ if (dst->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_reglu;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_reglu_f16;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case GGML_GLU_OP_SWIGLU:
|
|
|
+ if (dst->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_swiglu;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_swiglu_f16;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ GGML_ABORT("Unsupported glu op");
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
|
|
|
+
|
|
|
+ const int ne0 = dst->ne[0];
|
|
|
+
|
|
|
+ const cl_ulong nb01 = src0->nb[1];
|
|
|
+ const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
|
|
|
+
|
|
|
+ const cl_ulong nb1 = dst->nb[1];
|
|
|
+
|
|
|
+ const int swp = ((const int32_t *) dst->op_params)[1];
|
|
|
+ const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
|
|
|
+ const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
|
|
|
+
|
|
|
+ const size_t nrows = ggml_nrows(src0);
|
|
|
+ size_t nth = 512;
|
|
|
+ size_t global_work_size[] = {nrows*nth, 1, 1};
|
|
|
+ size_t local_work_size[] = {nth, 1, 1};
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
|
|
+}
|
|
|
+
|
|
|
//------------------------------------------------------------------------------
|
|
|
// Op offloading
|
|
|
//------------------------------------------------------------------------------
|
|
|
@@ -6244,6 +6362,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|
|
default:
|
|
|
return false;
|
|
|
} break;
|
|
|
+ case GGML_OP_GLU:
|
|
|
+ if (!any_on_device) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ func = ggml_cl_glu;
|
|
|
+ break;
|
|
|
case GGML_OP_CLAMP:
|
|
|
if (!any_on_device) {
|
|
|
return false;
|