|
|
@@ -449,6 +449,9 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
|
|
|
cl_kernel kernel_add_id;
|
|
|
cl_kernel kernel_scale;
|
|
|
+ cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
|
|
|
+ cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
|
|
|
+ cl_kernel kernel_mean_f32;
|
|
|
cl_kernel kernel_silu, kernel_silu_4;
|
|
|
cl_kernel kernel_gelu, kernel_gelu_4;
|
|
|
cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
|
|
|
@@ -509,6 +512,7 @@ struct ggml_backend_opencl_context {
|
|
|
cl_kernel kernel_conv_2d_f16;
|
|
|
cl_kernel kernel_conv_2d_f32;
|
|
|
cl_kernel kernel_conv_2d_f16_f32;
|
|
|
+ cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
|
|
|
cl_kernel kernel_timestep_embedding;
|
|
|
cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
|
|
|
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
|
|
|
@@ -1552,6 +1556,66 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
GGML_LOG_CONT(".");
|
|
|
}
|
|
|
|
|
|
+ // sqr
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "sqr.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("sqr.cl");
|
|
|
+#endif
|
|
|
+ cl_program prog =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
|
|
|
+
|
|
|
+ CL_CHECK(clReleaseProgram(prog));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
+ // sqrt
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "sqrt.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("sqrt.cl");
|
|
|
+#endif
|
|
|
+ cl_program prog =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
|
|
|
+
|
|
|
+ CL_CHECK(clReleaseProgram(prog));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
+ // mean
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "mean.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("mean.cl");
|
|
|
+#endif
|
|
|
+ cl_program prog =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
|
|
|
+
|
|
|
+ CL_CHECK(clReleaseProgram(prog));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
// sub
|
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
@@ -1825,6 +1889,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ // ssm_conv
|
|
|
+ {
|
|
|
+#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
+ const std::string kernel_src {
|
|
|
+ #include "ssm_conv.cl.h"
|
|
|
+ };
|
|
|
+#else
|
|
|
+ const std::string kernel_src = read_file("ssm_conv.cl");
|
|
|
+#endif
|
|
|
+ cl_program prog =
|
|
|
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
|
|
+
|
|
|
+ CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
|
|
|
+ CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
|
|
|
+ CL_CHECK(clReleaseProgram(prog));
|
|
|
+ GGML_LOG_CONT(".");
|
|
|
+ }
|
|
|
+
|
|
|
// mul_mv_id_q4_0_f32_8x_flat
|
|
|
{
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
|
@@ -2959,6 +3041,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|
|
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
|
|
|
case GGML_OP_ADD_ID:
|
|
|
return op->src[0]->type == GGML_TYPE_F32;
|
|
|
+ case GGML_OP_SQR:
|
|
|
+ case GGML_OP_SQRT:
|
|
|
+ return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
|
|
+ ggml_is_contiguous(op->src[0]);
|
|
|
case GGML_OP_UNARY:
|
|
|
switch (ggml_get_unary_op(op)) {
|
|
|
case GGML_UNARY_OP_GELU:
|
|
|
@@ -3007,6 +3093,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|
|
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
|
|
|
(op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
|
|
|
(op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
|
|
|
+ case GGML_OP_SSM_CONV:
|
|
|
+ return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
|
|
|
case GGML_OP_CONCAT:
|
|
|
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
|
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
|
@@ -3075,6 +3163,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|
|
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
|
|
|
}
|
|
|
case GGML_OP_SUM_ROWS:
|
|
|
+ case GGML_OP_MEAN:
|
|
|
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
|
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
|
{
|
|
|
@@ -5193,6 +5282,224 @@ static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ GGML_ASSERT(src0);
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
+ GGML_ASSERT(dst);
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
+ UNUSED(src1);
|
|
|
+
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ cl_kernel kernel;
|
|
|
+
|
|
|
+ // Currently assumes src0 is contiguous
|
|
|
+ int n = ggml_nelements(dst);
|
|
|
+ if (n % 4 == 0) {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_sqr_cont_f32_4;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_sqr_cont_f16_4;
|
|
|
+ }
|
|
|
+ n /= 4;
|
|
|
+ } else {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_sqr_cont_f32;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_sqr_cont_f16;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
+
|
|
|
+ size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
|
+ size_t local_work_size[] = {64, 1, 1};
|
|
|
+
|
|
|
+ size_t * local_work_size_ptr = local_work_size;
|
|
|
+ if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
|
|
+ local_work_size_ptr = nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ GGML_ASSERT(src0);
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
+ GGML_ASSERT(dst);
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
+ UNUSED(src1);
|
|
|
+
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ cl_kernel kernel;
|
|
|
+
|
|
|
+ // Currently assumes src0 is contiguous
|
|
|
+ int n = ggml_nelements(dst);
|
|
|
+ if (n % 4 == 0) {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_sqrt_cont_f32_4;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_sqrt_cont_f16_4;
|
|
|
+ }
|
|
|
+ n /= 4;
|
|
|
+ } else {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ kernel = backend_ctx->kernel_sqrt_cont_f32;
|
|
|
+ } else {
|
|
|
+ kernel = backend_ctx->kernel_sqrt_cont_f16;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
+
|
|
|
+ size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
|
+ size_t local_work_size[] = {64, 1, 1};
|
|
|
+
|
|
|
+ size_t * local_work_size_ptr = local_work_size;
|
|
|
+ if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
|
|
+ local_work_size_ptr = nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ GGML_ASSERT(src0);
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
+ GGML_ASSERT(dst);
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
+ GGML_UNUSED(src1);
|
|
|
+
|
|
|
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
|
|
+ GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
+
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ const int ne00 = src0->ne[0];
|
|
|
+ const int ne01 = src0->ne[1];
|
|
|
+ const int ne02 = src0->ne[2];
|
|
|
+ const int ne03 = src0->ne[3];
|
|
|
+
|
|
|
+ const cl_ulong nb01 = src0->nb[1];
|
|
|
+ const cl_ulong nb02 = src0->nb[2];
|
|
|
+ const cl_ulong nb03 = src0->nb[3];
|
|
|
+
|
|
|
+ const cl_ulong nb1 = dst->nb[1];
|
|
|
+ const cl_ulong nb2 = dst->nb[2];
|
|
|
+ const cl_ulong nb3 = dst->nb[3];
|
|
|
+
|
|
|
+ cl_kernel kernel = backend_ctx->kernel_mean_f32;
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
|
|
|
+
|
|
|
+ size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
|
|
|
+ size_t local_work_size[] = {(size_t)64, 1, 1};
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
+ GGML_ASSERT(src0);
|
|
|
+ GGML_ASSERT(src0->extra);
|
|
|
+ GGML_ASSERT(src1);
|
|
|
+ GGML_ASSERT(src1->extra);
|
|
|
+ GGML_ASSERT(dst);
|
|
|
+ GGML_ASSERT(dst->extra);
|
|
|
+
|
|
|
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
|
+
|
|
|
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
|
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
+
|
|
|
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
|
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
|
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
+
|
|
|
+ int ne01 = src0->ne[1];
|
|
|
+ cl_ulong nb00 = src0->nb[0];
|
|
|
+ cl_ulong nb01 = src0->nb[1];
|
|
|
+ cl_ulong nb02 = src0->nb[2];
|
|
|
+
|
|
|
+ int ne10 = src1->ne[0];
|
|
|
+ cl_ulong nb11 = src1->nb[1];
|
|
|
+
|
|
|
+ int ne1 = dst->ne[1];
|
|
|
+ int ne2 = dst->ne[2];
|
|
|
+ cl_ulong nb0 = dst->nb[0];
|
|
|
+ cl_ulong nb1 = dst->nb[1];
|
|
|
+ cl_ulong nb2 = dst->nb[2];
|
|
|
+
|
|
|
+ cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
|
|
|
+
|
|
|
+ if (ne10 % 4 == 0) {
|
|
|
+ kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
|
|
|
+ }
|
|
|
+
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
|
|
|
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
|
|
|
+
|
|
|
+ size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
|
|
|
+ size_t local_work_size[] = {64, 1, 1};
|
|
|
+
|
|
|
+ size_t * local_work_size_ptr = local_work_size;
|
|
|
+ if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
|
|
+ local_work_size_ptr = nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
|
|
|
+}
|
|
|
+
|
|
|
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
|
GGML_ASSERT(src0);
|
|
|
GGML_ASSERT(src0->extra);
|
|
|
@@ -9091,6 +9398,24 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|
|
}
|
|
|
func = ggml_cl_sub;
|
|
|
break;
|
|
|
+ case GGML_OP_SQR:
|
|
|
+ if (!any_on_device) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ func = ggml_cl_sqr;
|
|
|
+ break;
|
|
|
+ case GGML_OP_SQRT:
|
|
|
+ if (!any_on_device) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ func = ggml_cl_sqrt;
|
|
|
+ break;
|
|
|
+ case GGML_OP_MEAN:
|
|
|
+ if (!any_on_device) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ func = ggml_cl_mean;
|
|
|
+ break;
|
|
|
case GGML_OP_UNARY:
|
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
|
case GGML_UNARY_OP_GELU:
|
|
|
@@ -9192,6 +9517,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|
|
}
|
|
|
func = ggml_cl_conv_2d;
|
|
|
break;
|
|
|
+ case GGML_OP_SSM_CONV:
|
|
|
+ if (!any_on_device) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ func = ggml_cl_ssm_conv;
|
|
|
+ break;
|
|
|
case GGML_OP_CONCAT:
|
|
|
if (!any_on_device) {
|
|
|
return false;
|