|
@@ -2,6 +2,7 @@
|
|
|
|
|
|
|
|
import argparse
|
|
import argparse
|
|
|
import os
|
|
import os
|
|
|
|
|
+import sys
|
|
|
import numpy as np
|
|
import numpy as np
|
|
|
import importlib
|
|
import importlib
|
|
|
from pathlib import Path
|
|
from pathlib import Path
|
|
@@ -9,169 +10,243 @@ from pathlib import Path
|
|
|
from transformers import AutoTokenizer, AutoConfig, AutoModel
|
|
from transformers import AutoTokenizer, AutoConfig, AutoModel
|
|
|
import torch
|
|
import torch
|
|
|
|
|
|
|
|
-unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
|
|
|
|
-
|
|
|
|
|
-parser = argparse.ArgumentParser(description='Process model with specified path')
|
|
|
|
|
-parser.add_argument('--model-path', '-m', help='Path to the model')
|
|
|
|
|
-parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
|
|
|
|
|
-parser.add_argument('--use-sentence-transformers', action='store_true',
|
|
|
|
|
- help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
|
|
|
|
|
-args = parser.parse_args()
|
|
|
|
|
-
|
|
|
|
|
-def read_prompt_from_file(file_path):
|
|
|
|
|
- try:
|
|
|
|
|
- with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
- return f.read().strip()
|
|
|
|
|
- except FileNotFoundError:
|
|
|
|
|
- print(f"Error: Prompts file '{file_path}' not found")
|
|
|
|
|
- exit(1)
|
|
|
|
|
- except Exception as e:
|
|
|
|
|
- print(f"Error reading prompts file: {e}")
|
|
|
|
|
- exit(1)
|
|
|
|
|
-
|
|
|
|
|
-model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
|
|
|
|
-if model_path is None:
|
|
|
|
|
- parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
|
|
|
|
|
-
|
|
|
|
|
-# Determine if we should use SentenceTransformer
|
|
|
|
|
-use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
|
|
|
|
|
-
|
|
|
|
|
-if use_sentence_transformers:
|
|
|
|
|
- from sentence_transformers import SentenceTransformer
|
|
|
|
|
- print("Using SentenceTransformer to apply all numbered layers")
|
|
|
|
|
- model = SentenceTransformer(model_path)
|
|
|
|
|
- tokenizer = model.tokenizer
|
|
|
|
|
- config = model[0].auto_model.config # type: ignore
|
|
|
|
|
-else:
|
|
|
|
|
- tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
-
|
|
|
|
|
- config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
-
|
|
|
|
|
- # This can be used to override the sliding window size for manual testing. This
|
|
|
|
|
- # can be useful to verify the sliding window attention mask in the original model
|
|
|
|
|
- # and compare it with the converted .gguf model.
|
|
|
|
|
- if hasattr(config, 'sliding_window'):
|
|
|
|
|
- original_sliding_window = config.sliding_window
|
|
|
|
|
- #original_sliding_window = 6
|
|
|
|
|
- print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
|
|
|
|
-
|
|
|
|
|
- print(f"Using unreleased model: {unreleased_model_name}")
|
|
|
|
|
- if unreleased_model_name:
|
|
|
|
|
- model_name_lower = unreleased_model_name.lower()
|
|
|
|
|
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
|
|
|
|
- class_name = f"{unreleased_model_name}Model"
|
|
|
|
|
- print(f"Importing unreleased model module: {unreleased_module_path}")
|
|
|
|
|
|
|
|
|
|
|
|
+def parse_arguments():
|
|
|
|
|
+ parser = argparse.ArgumentParser(description='Run original embedding model')
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ '--model-path',
|
|
|
|
|
+ '-m',
|
|
|
|
|
+ help='Path to the model'
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ '--prompts-file',
|
|
|
|
|
+ '-p',
|
|
|
|
|
+ help='Path to file containing prompts (one per line)'
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ '--use-sentence-transformers',
|
|
|
|
|
+ action='store_true',
|
|
|
|
|
+ help=('Use SentenceTransformer to apply all numbered layers '
|
|
|
|
|
+ '(01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
|
|
|
|
|
+ )
|
|
|
|
|
+ parser.add_argument(
|
|
|
|
|
+ '--device',
|
|
|
|
|
+ '-d',
|
|
|
|
|
+ help='Device to use (cpu, cuda, mps, auto)',
|
|
|
|
|
+ default='auto'
|
|
|
|
|
+ )
|
|
|
|
|
+ return parser.parse_args()
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def load_model_and_tokenizer(model_path, use_sentence_transformers=False, device="auto"):
|
|
|
|
|
+ if device == "cpu":
|
|
|
|
|
+ device_map = {"": "cpu"}
|
|
|
|
|
+ print("Forcing CPU usage")
|
|
|
|
|
+ elif device == "auto":
|
|
|
|
|
+ # On Mac, "auto" device_map can cause issues with accelerate
|
|
|
|
|
+ # So we detect the best device manually
|
|
|
|
|
+ if torch.cuda.is_available():
|
|
|
|
|
+ device_map = {"": "cuda"}
|
|
|
|
|
+ print("Using CUDA")
|
|
|
|
|
+ elif torch.backends.mps.is_available():
|
|
|
|
|
+ device_map = {"": "mps"}
|
|
|
|
|
+ print("Using MPS (Apple Metal)")
|
|
|
|
|
+ else:
|
|
|
|
|
+ device_map = {"": "cpu"}
|
|
|
|
|
+ print("Using CPU")
|
|
|
|
|
+ else:
|
|
|
|
|
+ device_map = {"": device}
|
|
|
|
|
+
|
|
|
|
|
+ if use_sentence_transformers:
|
|
|
|
|
+ from sentence_transformers import SentenceTransformer
|
|
|
|
|
+ print("Using SentenceTransformer to apply all numbered layers")
|
|
|
|
|
+ model = SentenceTransformer(model_path)
|
|
|
|
|
+ tokenizer = model.tokenizer
|
|
|
|
|
+ config = model[0].auto_model.config # type: ignore
|
|
|
|
|
+ else:
|
|
|
|
|
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
+
|
|
|
|
|
+ # This can be used to override the sliding window size for manual testing. This
|
|
|
|
|
+ # can be useful to verify the sliding window attention mask in the original model
|
|
|
|
|
+ # and compare it with the converted .gguf model.
|
|
|
|
|
+ if hasattr(config, 'sliding_window'):
|
|
|
|
|
+ original_sliding_window = config.sliding_window
|
|
|
|
|
+ print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
|
|
|
|
+
|
|
|
|
|
+ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
|
|
|
|
+ print(f"Using unreleased model: {unreleased_model_name}")
|
|
|
|
|
+ if unreleased_model_name:
|
|
|
|
|
+ model_name_lower = unreleased_model_name.lower()
|
|
|
|
|
+ unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
|
|
|
|
+ class_name = f"{unreleased_model_name}Model"
|
|
|
|
|
+ print(f"Importing unreleased model module: {unreleased_module_path}")
|
|
|
|
|
+
|
|
|
|
|
+ try:
|
|
|
|
|
+ model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
|
|
|
|
+ model = model_class.from_pretrained(
|
|
|
|
|
+ model_path,
|
|
|
|
|
+ device_map=device_map,
|
|
|
|
|
+ offload_folder="offload",
|
|
|
|
|
+ trust_remote_code=True,
|
|
|
|
|
+ config=config
|
|
|
|
|
+ )
|
|
|
|
|
+ except (ImportError, AttributeError) as e:
|
|
|
|
|
+ print(f"Failed to import or load model: {e}")
|
|
|
|
|
+ sys.exit(1)
|
|
|
|
|
+ else:
|
|
|
|
|
+ model = AutoModel.from_pretrained(
|
|
|
|
|
+ model_path,
|
|
|
|
|
+ device_map=device_map,
|
|
|
|
|
+ offload_folder="offload",
|
|
|
|
|
+ trust_remote_code=True,
|
|
|
|
|
+ config=config
|
|
|
|
|
+ )
|
|
|
|
|
+ print(f"Model class: {type(model)}")
|
|
|
|
|
+ print(f"Model file: {type(model).__module__}")
|
|
|
|
|
+
|
|
|
|
|
+ # Verify the model is using the correct sliding window
|
|
|
|
|
+ if hasattr(model.config, 'sliding_window'): # type: ignore
|
|
|
|
|
+ print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
|
|
|
|
|
+ else:
|
|
|
|
|
+ print("Model config does not have sliding_window attribute")
|
|
|
|
|
+
|
|
|
|
|
+ return model, tokenizer, config
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def get_prompt(args):
|
|
|
|
|
+ if args.prompts_file:
|
|
|
try:
|
|
try:
|
|
|
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
|
|
|
|
- model = model_class.from_pretrained(model_path, config=config, trust_remote_code=True)
|
|
|
|
|
- except (ImportError, AttributeError) as e:
|
|
|
|
|
- print(f"Failed to import or load model: {e}")
|
|
|
|
|
- exit(1)
|
|
|
|
|
|
|
+ with open(args.prompts_file, 'r', encoding='utf-8') as f:
|
|
|
|
|
+ return f.read().strip()
|
|
|
|
|
+ except FileNotFoundError:
|
|
|
|
|
+ print(f"Error: Prompts file '{args.prompts_file}' not found")
|
|
|
|
|
+ sys.exit(1)
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ print(f"Error reading prompts file: {e}")
|
|
|
|
|
+ sys.exit(1)
|
|
|
else:
|
|
else:
|
|
|
- model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
|
|
|
|
|
- print(f"Model class: {type(model)}")
|
|
|
|
|
- print(f"Model file: {type(model).__module__}")
|
|
|
|
|
-
|
|
|
|
|
-# Verify the model is using the correct sliding window
|
|
|
|
|
-if not use_sentence_transformers:
|
|
|
|
|
- if hasattr(model.config, 'sliding_window'): # type: ignore
|
|
|
|
|
- print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
|
|
|
|
|
|
|
+ return "Hello world today"
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def main():
|
|
|
|
|
+ args = parse_arguments()
|
|
|
|
|
+
|
|
|
|
|
+ model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
|
|
|
|
+ if model_path is None:
|
|
|
|
|
+ print("Error: Model path must be specified either via --model-path argument "
|
|
|
|
|
+ "or EMBEDDING_MODEL_PATH environment variable")
|
|
|
|
|
+ sys.exit(1)
|
|
|
|
|
+
|
|
|
|
|
+ # Determine if we should use SentenceTransformer
|
|
|
|
|
+ use_st = (
|
|
|
|
|
+ args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ model, tokenizer, config = load_model_and_tokenizer(model_path, use_st, args.device)
|
|
|
|
|
+
|
|
|
|
|
+ # Get the device the model is on
|
|
|
|
|
+ if not use_st:
|
|
|
|
|
+ device = next(model.parameters()).device
|
|
|
else:
|
|
else:
|
|
|
- print("Model config does not have sliding_window attribute")
|
|
|
|
|
|
|
+ # For SentenceTransformer, get device from the underlying model
|
|
|
|
|
+ device = next(model[0].auto_model.parameters()).device # type: ignore
|
|
|
|
|
|
|
|
-model_name = os.path.basename(model_path)
|
|
|
|
|
|
|
+ model_name = os.path.basename(model_path)
|
|
|
|
|
|
|
|
-if args.prompts_file:
|
|
|
|
|
- prompt_text = read_prompt_from_file(args.prompts_file)
|
|
|
|
|
|
|
+ prompt_text = get_prompt(args)
|
|
|
texts = [prompt_text]
|
|
texts = [prompt_text]
|
|
|
-else:
|
|
|
|
|
- texts = ["Hello world today"]
|
|
|
|
|
|
|
|
|
|
-with torch.no_grad():
|
|
|
|
|
- if use_sentence_transformers:
|
|
|
|
|
- embeddings = model.encode(texts, convert_to_numpy=True)
|
|
|
|
|
- all_embeddings = embeddings # Shape: [batch_size, hidden_size]
|
|
|
|
|
-
|
|
|
|
|
- encoded = tokenizer(
|
|
|
|
|
- texts,
|
|
|
|
|
- padding=True,
|
|
|
|
|
- truncation=True,
|
|
|
|
|
- return_tensors="pt"
|
|
|
|
|
- )
|
|
|
|
|
- tokens = encoded['input_ids'][0]
|
|
|
|
|
- token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
|
|
|
|
- for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
|
|
|
|
- print(f"{token_id:6d} -> '{token_str}'")
|
|
|
|
|
-
|
|
|
|
|
- print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
|
|
|
|
|
- print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
|
|
|
|
|
- else:
|
|
|
|
|
- # Standard approach: use base model output only
|
|
|
|
|
- encoded = tokenizer(
|
|
|
|
|
- texts,
|
|
|
|
|
- padding=True,
|
|
|
|
|
- truncation=True,
|
|
|
|
|
- return_tensors="pt"
|
|
|
|
|
- )
|
|
|
|
|
-
|
|
|
|
|
- tokens = encoded['input_ids'][0]
|
|
|
|
|
- token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
|
|
|
|
- for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
|
|
|
|
- print(f"{token_id:6d} -> '{token_str}'")
|
|
|
|
|
-
|
|
|
|
|
- outputs = model(**encoded)
|
|
|
|
|
- hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
|
|
|
|
-
|
|
|
|
|
- all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
|
|
|
|
|
-
|
|
|
|
|
- print(f"Hidden states shape: {hidden_states.shape}")
|
|
|
|
|
- print(f"All embeddings shape: {all_embeddings.shape}")
|
|
|
|
|
- print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
|
|
|
|
-
|
|
|
|
|
- if len(all_embeddings.shape) == 1:
|
|
|
|
|
- n_embd = all_embeddings.shape[0] # type: ignore
|
|
|
|
|
- n_embd_count = 1
|
|
|
|
|
- all_embeddings = all_embeddings.reshape(1, -1)
|
|
|
|
|
- else:
|
|
|
|
|
- n_embd = all_embeddings.shape[1] # type: ignore
|
|
|
|
|
- n_embd_count = all_embeddings.shape[0] # type: ignore
|
|
|
|
|
|
|
+ with torch.no_grad():
|
|
|
|
|
+ if use_st:
|
|
|
|
|
+ embeddings = model.encode(texts, convert_to_numpy=True)
|
|
|
|
|
+ all_embeddings = embeddings # Shape: [batch_size, hidden_size]
|
|
|
|
|
+
|
|
|
|
|
+ encoded = tokenizer(
|
|
|
|
|
+ texts,
|
|
|
|
|
+ padding=True,
|
|
|
|
|
+ truncation=True,
|
|
|
|
|
+ return_tensors="pt"
|
|
|
|
|
+ )
|
|
|
|
|
+ tokens = encoded['input_ids'][0]
|
|
|
|
|
+ token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
|
|
|
|
+ for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
|
|
|
|
+ print(f"{token_id:6d} -> '{token_str}'")
|
|
|
|
|
+
|
|
|
|
|
+ print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
|
|
|
|
|
+ print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
|
|
|
|
|
+ else:
|
|
|
|
|
+ # Standard approach: use base model output only
|
|
|
|
|
+ encoded = tokenizer(
|
|
|
|
|
+ texts,
|
|
|
|
|
+ padding=True,
|
|
|
|
|
+ truncation=True,
|
|
|
|
|
+ return_tensors="pt"
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ tokens = encoded['input_ids'][0]
|
|
|
|
|
+ token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
|
|
|
|
+ for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
|
|
|
|
+ print(f"{token_id:6d} -> '{token_str}'")
|
|
|
|
|
+
|
|
|
|
|
+ # Move inputs to the same device as the model
|
|
|
|
|
+ encoded = {k: v.to(device) for k, v in encoded.items()}
|
|
|
|
|
+ outputs = model(**encoded)
|
|
|
|
|
+ hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
|
|
|
|
+
|
|
|
|
|
+ all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
|
|
|
|
|
+
|
|
|
|
|
+ print(f"Hidden states shape: {hidden_states.shape}")
|
|
|
|
|
+ print(f"All embeddings shape: {all_embeddings.shape}")
|
|
|
|
|
+ print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
|
|
|
|
+
|
|
|
|
|
+ if len(all_embeddings.shape) == 1:
|
|
|
|
|
+ n_embd = all_embeddings.shape[0] # type: ignore
|
|
|
|
|
+ n_embd_count = 1
|
|
|
|
|
+ all_embeddings = all_embeddings.reshape(1, -1)
|
|
|
|
|
+ else:
|
|
|
|
|
+ n_embd = all_embeddings.shape[1] # type: ignore
|
|
|
|
|
+ n_embd_count = all_embeddings.shape[0] # type: ignore
|
|
|
|
|
+
|
|
|
|
|
+ print()
|
|
|
|
|
+
|
|
|
|
|
+ for j in range(n_embd_count):
|
|
|
|
|
+ embedding = all_embeddings[j]
|
|
|
|
|
+ print(f"embedding {j}: ", end="")
|
|
|
|
|
|
|
|
- print()
|
|
|
|
|
|
|
+ # Print first 3 values
|
|
|
|
|
+ for i in range(min(3, n_embd)):
|
|
|
|
|
+ print(f"{embedding[i]:9.6f} ", end="")
|
|
|
|
|
|
|
|
- for j in range(n_embd_count):
|
|
|
|
|
- embedding = all_embeddings[j]
|
|
|
|
|
- print(f"embedding {j}: ", end="")
|
|
|
|
|
|
|
+ print(" ... ", end="")
|
|
|
|
|
|
|
|
- # Print first 3 values
|
|
|
|
|
- for i in range(min(3, n_embd)):
|
|
|
|
|
- print(f"{embedding[i]:9.6f} ", end="")
|
|
|
|
|
|
|
+ # Print last 3 values
|
|
|
|
|
+ for i in range(n_embd - 3, n_embd):
|
|
|
|
|
+ print(f"{embedding[i]:9.6f} ", end="")
|
|
|
|
|
|
|
|
- print(" ... ", end="")
|
|
|
|
|
|
|
+ print() # New line
|
|
|
|
|
|
|
|
- # Print last 3 values
|
|
|
|
|
- for i in range(n_embd - 3, n_embd):
|
|
|
|
|
- print(f"{embedding[i]:9.6f} ", end="")
|
|
|
|
|
|
|
+ print()
|
|
|
|
|
|
|
|
- print() # New line
|
|
|
|
|
|
|
+ data_dir = Path("data")
|
|
|
|
|
+ data_dir.mkdir(exist_ok=True)
|
|
|
|
|
+ bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
|
|
|
|
+ txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
|
|
|
|
|
|
|
- print()
|
|
|
|
|
|
|
+ flattened_embeddings = all_embeddings.flatten()
|
|
|
|
|
+ flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
|
|
|
|
|
|
|
- data_dir = Path("data")
|
|
|
|
|
- data_dir.mkdir(exist_ok=True)
|
|
|
|
|
- bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
|
|
|
|
- txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
|
|
|
|
|
|
+ with open(txt_filename, "w") as f:
|
|
|
|
|
+ idx = 0
|
|
|
|
|
+ for j in range(n_embd_count):
|
|
|
|
|
+ for value in all_embeddings[j]:
|
|
|
|
|
+ f.write(f"{idx}: {value:.6f}\n")
|
|
|
|
|
+ idx += 1
|
|
|
|
|
+ print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
|
|
|
|
|
+ print("")
|
|
|
|
|
+ print(f"Saved bin embeddings to: {bin_filename}")
|
|
|
|
|
+ print(f"Saved txt embeddings to: {txt_filename}")
|
|
|
|
|
|
|
|
- flattened_embeddings = all_embeddings.flatten()
|
|
|
|
|
- flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
|
|
|
|
|
|
|
|
|
- with open(txt_filename, "w") as f:
|
|
|
|
|
- idx = 0
|
|
|
|
|
- for j in range(n_embd_count):
|
|
|
|
|
- for value in all_embeddings[j]:
|
|
|
|
|
- f.write(f"{idx}: {value:.6f}\n")
|
|
|
|
|
- idx += 1
|
|
|
|
|
- print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
|
|
|
|
|
- print("")
|
|
|
|
|
- print(f"Saved bin embeddings to: {bin_filename}")
|
|
|
|
|
- print(f"Saved txt embeddings to: {txt_filename}")
|
|
|
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
|
+ main()
|