|
|
@@ -540,14 +540,14 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|
|
// This is needed as usual for LLaMA models
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
|
|
+ // The tasks should be randomized so the score stabilizes quickly.
|
|
|
+ bool randomize_tasks = true;
|
|
|
+
|
|
|
// Number of tasks to use when computing the score
|
|
|
if (params.hellaswag_tasks < hs_task_count) {
|
|
|
hs_task_count = params.hellaswag_tasks;
|
|
|
}
|
|
|
|
|
|
- // The tasks should be randomized so the score stabilizes quickly.
|
|
|
- bool randomize_tasks = true;
|
|
|
-
|
|
|
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
|
|
std::mt19937 rng(1);
|
|
|
|
|
|
@@ -1031,6 +1031,389 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
|
|
printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
|
|
|
}
|
|
|
|
|
|
+static bool deserialize_string(std::istream& in, std::string& str) {
|
|
|
+ uint32_t size;
|
|
|
+ if (!in.read((char *)&size, sizeof(size)).fail()) {
|
|
|
+ str.resize(size);
|
|
|
+ if (!in.read((char *)str.data(), size).fail()) return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+struct multiple_choice_answers {
|
|
|
+ std::vector<std::string> answers;
|
|
|
+ std::vector<int> labels;
|
|
|
+ bool deserialize(std::istream& in) {
|
|
|
+ uint32_t n;
|
|
|
+ in.read((char *)&n, sizeof(n));
|
|
|
+ if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
|
|
|
+ answers.resize(n);
|
|
|
+ labels.resize(n);
|
|
|
+ for (auto& a : answers) {
|
|
|
+ if (!deserialize_string(in, a)) return false;
|
|
|
+ }
|
|
|
+ in.read((char *)labels.data(), n*sizeof(int));
|
|
|
+ return !in.fail();
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+struct multiple_choice_task {
|
|
|
+ std::string question; // the question (or context that needs to be continued)
|
|
|
+ multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
|
|
|
+ multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
|
|
|
+ bool deserialize(std::istream& in) {
|
|
|
+ if (!deserialize_string(in, question)) return false;
|
|
|
+ return mc1.deserialize(in) && mc2.deserialize(in);
|
|
|
+ }
|
|
|
+
|
|
|
+ // For evaluation
|
|
|
+ size_t i_batch; // starting index in the llama_batch
|
|
|
+ size_t common_prefix; // max number of initial tokens that are the same in all sentences
|
|
|
+ size_t required_tokens; // needed number of tokens to evaluate all answers
|
|
|
+ std::vector<std::vector<llama_token>> seq_tokens;
|
|
|
+ std::vector<float> log_probs;
|
|
|
+};
|
|
|
+
|
|
|
+static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) {
|
|
|
+ if (task.question.empty() || task.mc1.answers.empty()) {
|
|
|
+ if (log_error) {
|
|
|
+ printf("%s: found bad task with empty question and/or answers\n", __func__);
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ task.seq_tokens.reserve(task.mc1.answers.size());
|
|
|
+ for (auto& answer : task.mc1.answers) {
|
|
|
+ if (answer.empty()) {
|
|
|
+ if (log_error) {
|
|
|
+ printf("%s: found empty answer\n", __func__);
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos));
|
|
|
+ }
|
|
|
+ auto min_len = task.seq_tokens.front().size();
|
|
|
+ for (auto& seq : task.seq_tokens) {
|
|
|
+ min_len = std::min(min_len, seq.size());
|
|
|
+ }
|
|
|
+ task.common_prefix = 0;
|
|
|
+ for (size_t k = 0; k < min_len; ++k) {
|
|
|
+ auto token = task.seq_tokens[0][k];
|
|
|
+ bool all_same = true;
|
|
|
+ for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
|
|
|
+ if (task.seq_tokens[i][k] != token) {
|
|
|
+ all_same = false;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!all_same) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++task.common_prefix;
|
|
|
+ }
|
|
|
+ task.required_tokens = task.common_prefix;
|
|
|
+ for (auto& seq : task.seq_tokens) {
|
|
|
+ task.required_tokens += seq.size() - task.common_prefix;
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+//
|
|
|
+// Calculates score for multiple choice tasks with single correct answer from prompt.
|
|
|
+// Commonly used LLM evaluation metrics of this type are
|
|
|
+// * ARC
|
|
|
+// * HellaSwag
|
|
|
+// * MMLU
|
|
|
+// * TruthfulQA
|
|
|
+//
|
|
|
+// Validation datasets for these 4 tests can be found at
|
|
|
+// https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
|
|
|
+// The data for these datasets was extracted from
|
|
|
+// git@hf.co:datasets/allenai/ai2_arc
|
|
|
+// https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
|
|
+// git@hf.co:datasets/Stevross/mmlu
|
|
|
+// https://huggingface.co/datasets/truthful_qa
|
|
|
+//
|
|
|
+static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
|
|
|
+
|
|
|
+ std::istringstream strstream(params.prompt);
|
|
|
+ uint32_t n_task;
|
|
|
+ strstream.read((char *)&n_task, sizeof(n_task));
|
|
|
+ if (strstream.fail() || n_task == 0) {
|
|
|
+ printf("%s: no tasks\n", __func__);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ printf("%s: there are %u tasks in prompt\n", __func__, n_task);
|
|
|
+ std::vector<uint32_t> task_pos(n_task);
|
|
|
+ strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
|
|
|
+ if (strstream.fail()) {
|
|
|
+ printf("%s: failed to raad task positions from prompt\n", __func__);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<multiple_choice_task> tasks;
|
|
|
+ if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
|
|
|
+ // Use all tasks
|
|
|
+ tasks.resize(n_task);
|
|
|
+ printf("%s: reading tasks", __func__);
|
|
|
+ int n_dot = n_task/100;
|
|
|
+ int i = 0;
|
|
|
+ for (auto& task : tasks) {
|
|
|
+ ++i;
|
|
|
+ if (!task.deserialize(strstream)) {
|
|
|
+ printf("%s: failed to read task %d of %u\n", __func__, i, n_task);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (i%n_dot == 0) printf(".");
|
|
|
+ }
|
|
|
+ printf("done\n");
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
|
|
|
+ std::mt19937 rng(1);
|
|
|
+ std::vector<int> aux(n_task);
|
|
|
+ for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
|
|
|
+ float scale = 1.f/(1.f + (float)std::mt19937::max());
|
|
|
+ tasks.resize(params.multiple_choice_tasks);
|
|
|
+ for (auto& task : tasks) {
|
|
|
+ int j = (int)(scale * rng() * aux.size());
|
|
|
+ int idx = aux[j];
|
|
|
+ aux[j] = aux.back();
|
|
|
+ aux.pop_back();
|
|
|
+ strstream.seekg(task_pos[idx], std::ios::beg);
|
|
|
+ if (!task.deserialize(strstream)) {
|
|
|
+ printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ n_task = params.multiple_choice_tasks;
|
|
|
+ }
|
|
|
+
|
|
|
+ // This is needed as usual for LLaMA models
|
|
|
+ const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
+
|
|
|
+ printf("%s: preparing task data", __func__);
|
|
|
+ fflush(stdout);
|
|
|
+ if (n_task > 500) {
|
|
|
+ printf("...");
|
|
|
+ fflush(stdout);
|
|
|
+ std::atomic<int> counter(0);
|
|
|
+ std::atomic<int> n_bad(0);
|
|
|
+ auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () {
|
|
|
+ int num_tasks = tasks.size();
|
|
|
+ int n_bad_local = 0;
|
|
|
+ while (true) {
|
|
|
+ int first = counter.fetch_add(K_TOKEN_CHUNK);
|
|
|
+ if (first >= num_tasks) {
|
|
|
+ if (n_bad_local > 0) n_bad += n_bad_local;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
|
|
|
+ for (int i = first; i < last; ++i) {
|
|
|
+ if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ };
|
|
|
+ size_t max_thread = std::thread::hardware_concurrency();
|
|
|
+ max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
|
|
|
+ std::vector<std::thread> workers(max_thread-1);
|
|
|
+ for (auto& w : workers) w = std::thread(prepare);
|
|
|
+ prepare();
|
|
|
+ for (auto& w : workers) w.join();
|
|
|
+ printf("done\n");
|
|
|
+ fflush(stdout);
|
|
|
+ int nbad = n_bad;
|
|
|
+ if (nbad > 0) {
|
|
|
+ printf("%s: found %d malformed tasks\n", __func__, nbad);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ int n_dot = n_task/100;
|
|
|
+ int i_task = 0;
|
|
|
+ for (auto& task : tasks) {
|
|
|
+ ++i_task;
|
|
|
+ if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (i_task%n_dot == 0) {
|
|
|
+ printf(".");
|
|
|
+ fflush(stdout);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ printf("done\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
|
|
|
+
|
|
|
+ printf("\ntask\tacc_norm\n");
|
|
|
+
|
|
|
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
|
+ const int n_ctx = llama_n_ctx(ctx);
|
|
|
+ const int n_batch = params.n_batch;
|
|
|
+
|
|
|
+ const int max_tasks_per_batch = 32;
|
|
|
+ const int max_seq = 4*max_tasks_per_batch;
|
|
|
+
|
|
|
+ llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
|
|
+
|
|
|
+ std::vector<float> tok_logits(n_vocab);
|
|
|
+ std::vector<float> batch_logits(n_vocab*n_ctx);
|
|
|
+
|
|
|
+ std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
|
|
+ std::vector<float> eval_results;
|
|
|
+ std::vector<std::thread> workers(std::thread::hardware_concurrency());
|
|
|
+ std::vector<int> batch_indeces;
|
|
|
+
|
|
|
+ int n_done = 0;
|
|
|
+ int n_correct = 0;
|
|
|
+ int n_tot_answers = 0;
|
|
|
+
|
|
|
+ for (size_t i0 = 0; i0 < tasks.size(); i0++) {
|
|
|
+ int n_cur = 0;
|
|
|
+
|
|
|
+ size_t i1 = i0;
|
|
|
+ size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
|
|
|
+
|
|
|
+ llama_batch_clear(batch);
|
|
|
+
|
|
|
+ // batch as much tasks as possible into the available context
|
|
|
+ // each task has 4 unique seuqnce ids - one for each ending
|
|
|
+ // the common prefix is shared among the 4 sequences to save tokens
|
|
|
+ // we extract logits only from the last common token and from all ending tokens of each sequence
|
|
|
+ int s0 = 0;
|
|
|
+ while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
|
|
|
+ auto& cur_task = tasks[i1];
|
|
|
+
|
|
|
+ int num_answers = cur_task.seq_tokens.size();
|
|
|
+ if (s0 + num_answers > max_seq) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (int(batch_indeces.size()) != num_answers) {
|
|
|
+ batch_indeces.resize(num_answers);
|
|
|
+ }
|
|
|
+ for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
|
|
|
+
|
|
|
+ for (size_t i = 0; i < cur_task.common_prefix; ++i) {
|
|
|
+ //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
|
|
|
+ llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
|
|
+ }
|
|
|
+ batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
|
|
+
|
|
|
+ for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
|
+ for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) {
|
|
|
+ llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ s0 += num_answers;
|
|
|
+
|
|
|
+ cur_task.i_batch = i_batch;
|
|
|
+ i_batch += cur_task.required_tokens;
|
|
|
+
|
|
|
+ n_cur += cur_task.required_tokens;
|
|
|
+ if (++i1 == tasks.size()) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i0 == i1) {
|
|
|
+ fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_kv_cache_clear(ctx);
|
|
|
+
|
|
|
+ // decode all tasks [i0, i1)
|
|
|
+ if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
|
|
|
+ fprintf(stderr, "%s: llama_decode() failed\n", __func__);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Compute log-probs in parallel
|
|
|
+ // First we collect all tasks
|
|
|
+ eval_pairs.clear();
|
|
|
+ for (size_t i = i0; i < i1; ++i) {
|
|
|
+ auto& cur_task = tasks[i];
|
|
|
+ size_t li = cur_task.common_prefix;
|
|
|
+ for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
|
+ for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
|
|
+ eval_pairs.push_back(std::make_pair(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]));
|
|
|
+ }
|
|
|
+ ++li;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Then we do the actual calculation
|
|
|
+ compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
|
|
+
|
|
|
+ size_t ir = 0;
|
|
|
+
|
|
|
+ // compute the logprobs for each ending of the decoded tasks
|
|
|
+ for (size_t i = i0; i < i1; ++i) {
|
|
|
+ auto & cur_task = tasks[i];
|
|
|
+ //printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
|
|
|
+ //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
|
|
|
+ // if (cur_task.mc1.labels[j] == 1) {
|
|
|
+ // printf("%d", j+1);
|
|
|
+ // }
|
|
|
+ //}
|
|
|
+ //printf("\n common_prefix: %zu\n", cur_task.common_prefix);
|
|
|
+
|
|
|
+ std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float));
|
|
|
+
|
|
|
+ const auto first_probs = softmax(tok_logits);
|
|
|
+
|
|
|
+ cur_task.log_probs.resize(cur_task.seq_tokens.size());
|
|
|
+ for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
|
|
+ size_t count = 1;
|
|
|
+ float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
|
|
|
+ for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
|
|
+ //printf(" %zu %g\n", ir, eval_results[ir]);
|
|
|
+ ++count;
|
|
|
+ log_prob += eval_results[ir++];
|
|
|
+ }
|
|
|
+ cur_task.log_probs[s] = log_prob / count;
|
|
|
+ //printf(" Final: %g\n", log_prob / count);
|
|
|
+ //printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Find the ending with maximum logprob
|
|
|
+ size_t logprob_max_idx = 0;
|
|
|
+ float logprob_max_val = cur_task.log_probs[0];
|
|
|
+ for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
|
|
|
+ if (cur_task.log_probs[s] > logprob_max_val) {
|
|
|
+ logprob_max_val = cur_task.log_probs[s];
|
|
|
+ logprob_max_idx = s;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ n_tot_answers += cur_task.log_probs.size();
|
|
|
+ if (cur_task.mc1.labels[logprob_max_idx] == 1) {
|
|
|
+ ++n_correct;
|
|
|
+ }
|
|
|
+ ++n_done;
|
|
|
+
|
|
|
+ // Print the accumulated accuracy mean x 100
|
|
|
+ printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
|
|
|
+ fflush(stdout);
|
|
|
+ }
|
|
|
+
|
|
|
+ i0 = i1 - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_batch_free(batch);
|
|
|
+
|
|
|
+ if (n_done < 100) return;
|
|
|
+
|
|
|
+ float p = 1.f*n_correct/n_done;
|
|
|
+ float sigma = sqrt(p*(1-p)/(n_done-1));
|
|
|
+ printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
|
|
+ p = 1.f*n_done/n_tot_answers;
|
|
|
+ sigma = sqrt(p*(1-p)/(n_done-1));
|
|
|
+ printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
|
|
|
+
|
|
|
+ printf("\n");
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
gpt_params params;
|
|
|
@@ -1091,6 +1474,8 @@ int main(int argc, char ** argv) {
|
|
|
hellaswag_score(ctx, params);
|
|
|
} else if (params.winogrande) {
|
|
|
winogrande_score(ctx, params);
|
|
|
+ } else if (params.multiple_choice) {
|
|
|
+ multiple_choice_score(ctx, params);
|
|
|
} else {
|
|
|
results = perplexity(ctx, params);
|
|
|
}
|