|
|
@@ -647,6 +647,22 @@ static bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg,
|
|
|
params.model = argv[i];
|
|
|
return true;
|
|
|
}
|
|
|
+ if (arg == "-md" || arg == "--model-draft") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ params.model_draft = argv[i];
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if (arg == "-a" || arg == "--alias") {
|
|
|
+ if (++i >= argc) {
|
|
|
+ invalid_param = true;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ params.model_alias = argv[i];
|
|
|
+ return true;
|
|
|
+ }
|
|
|
if (arg == "-mu" || arg == "--model-url") {
|
|
|
if (++i >= argc) {
|
|
|
invalid_param = true;
|
|
|
@@ -655,20 +671,20 @@ static bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg,
|
|
|
params.model_url = argv[i];
|
|
|
return true;
|
|
|
}
|
|
|
- if (arg == "-md" || arg == "--model-draft") {
|
|
|
+ if (arg == "-hfr" || arg == "--hf-repo") {
|
|
|
if (++i >= argc) {
|
|
|
invalid_param = true;
|
|
|
return true;
|
|
|
}
|
|
|
- params.model_draft = argv[i];
|
|
|
+ params.hf_repo = argv[i];
|
|
|
return true;
|
|
|
}
|
|
|
- if (arg == "-a" || arg == "--alias") {
|
|
|
+ if (arg == "-hff" || arg == "--hf-file") {
|
|
|
if (++i >= argc) {
|
|
|
invalid_param = true;
|
|
|
return true;
|
|
|
}
|
|
|
- params.model_alias = argv[i];
|
|
|
+ params.hf_file = argv[i];
|
|
|
return true;
|
|
|
}
|
|
|
if (arg == "--lora") {
|
|
|
@@ -1403,10 +1419,14 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|
|
printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
|
|
|
printf(" -m FNAME, --model FNAME\n");
|
|
|
printf(" model path (default: %s)\n", params.model.c_str());
|
|
|
- printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
|
|
- printf(" model download url (default: %s)\n", params.model_url.c_str());
|
|
|
printf(" -md FNAME, --model-draft FNAME\n");
|
|
|
- printf(" draft model for speculative decoding\n");
|
|
|
+ printf(" draft model for speculative decoding (default: unused)\n");
|
|
|
+ printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
|
|
+ printf(" model download url (default: unused)\n");
|
|
|
+ printf(" -hfr REPO, --hf-repo REPO\n");
|
|
|
+ printf(" Hugging Face model repository (default: unused)\n");
|
|
|
+ printf(" -hff FILE, --hf-file FILE\n");
|
|
|
+ printf(" Hugging Face model file (default: unused)\n");
|
|
|
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
|
|
printf(" path under which to save YAML logs (no logging if unset)\n");
|
|
|
printf(" --override-kv KEY=TYPE:VALUE\n");
|
|
|
@@ -1655,8 +1675,10 @@ void llama_batch_add(
|
|
|
|
|
|
#ifdef LLAMA_USE_CURL
|
|
|
|
|
|
-struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model,
|
|
|
- struct llama_model_params params) {
|
|
|
+struct llama_model * llama_load_model_from_url(
|
|
|
+ const char * model_url,
|
|
|
+ const char * path_model,
|
|
|
+ const struct llama_model_params & params) {
|
|
|
// Basic validation of the model_url
|
|
|
if (!model_url || strlen(model_url) == 0) {
|
|
|
fprintf(stderr, "%s: invalid model_url\n", __func__);
|
|
|
@@ -1850,25 +1872,62 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
|
|
return llama_load_model_from_file(path_model, params);
|
|
|
}
|
|
|
|
|
|
+struct llama_model * llama_load_model_from_hf(
|
|
|
+ const char * repo,
|
|
|
+ const char * model,
|
|
|
+ const char * path_model,
|
|
|
+ const struct llama_model_params & params) {
|
|
|
+ // construct hugging face model url:
|
|
|
+ //
|
|
|
+ // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
|
|
+ // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
|
|
+ //
|
|
|
+ // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
|
|
+ // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
|
|
+ //
|
|
|
+
|
|
|
+ std::string model_url = "https://huggingface.co/";
|
|
|
+ model_url += repo;
|
|
|
+ model_url += "/resolve/main/";
|
|
|
+ model_url += model;
|
|
|
+
|
|
|
+ return llama_load_model_from_url(model_url.c_str(), path_model, params);
|
|
|
+}
|
|
|
+
|
|
|
#else
|
|
|
|
|
|
-struct llama_model * llama_load_model_from_url(const char * /*model_url*/, const char * /*path_model*/,
|
|
|
- struct llama_model_params /*params*/) {
|
|
|
+struct llama_model * llama_load_model_from_url(
|
|
|
+ const char * /*model_url*/,
|
|
|
+ const char * /*path_model*/,
|
|
|
+ const struct llama_model_params & /*params*/) {
|
|
|
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
|
|
return nullptr;
|
|
|
}
|
|
|
|
|
|
+struct llama_model * llama_load_model_from_hf(
|
|
|
+ const char * /*repo*/,
|
|
|
+ const char * /*model*/,
|
|
|
+ const char * /*path_model*/,
|
|
|
+ const struct llama_model_params & /*params*/) {
|
|
|
+ fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
|
|
+ return nullptr;
|
|
|
+}
|
|
|
+
|
|
|
#endif // LLAMA_USE_CURL
|
|
|
|
|
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
|
|
auto mparams = llama_model_params_from_gpt_params(params);
|
|
|
|
|
|
llama_model * model = nullptr;
|
|
|
- if (!params.model_url.empty()) {
|
|
|
+
|
|
|
+ if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
|
|
+ model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
|
|
|
+ } else if (!params.model_url.empty()) {
|
|
|
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
|
|
|
} else {
|
|
|
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
|
|
}
|
|
|
+
|
|
|
if (model == NULL) {
|
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
|
|
return std::make_tuple(nullptr, nullptr);
|
|
|
@@ -1908,7 +1967,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|
|
}
|
|
|
|
|
|
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
|
|
- const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
|
|
|
+ const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
|
|
|
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
|
|
int err = llama_model_apply_lora_from_file(model,
|
|
|
lora_adapter.c_str(),
|