|
|
@@ -116,8 +116,10 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_A13B: return "A13B";
|
|
|
case LLM_TYPE_7B_A1B: return "7B.A1B";
|
|
|
case LLM_TYPE_8B_A1B: return "8B.A1B";
|
|
|
+ case LLM_TYPE_16B_A1B: return "16B.A1B";
|
|
|
case LLM_TYPE_21B_A3B: return "21B.A3B";
|
|
|
case LLM_TYPE_30B_A3B: return "30B.A3B";
|
|
|
+ case LLM_TYPE_100B_A6B: return "100B.A6B";
|
|
|
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
|
|
case LLM_TYPE_235B_A22B: return "235B.A22B";
|
|
|
case LLM_TYPE_300B_A47B: return "300B.A47B";
|
|
|
@@ -481,11 +483,13 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
|
|
- ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
|
|
- ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
|
|
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
|
|
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
|
|
+ ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
|
|
+ ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
|
|
+ ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
|
|
|
|
|
|
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
|
|
|
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
|
|
|
@@ -501,8 +505,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
|
|
|
if (hparams.n_expert > 0) {
|
|
|
GGML_ASSERT(hparams.n_expert_used > 0);
|
|
|
+ GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
|
|
|
+ if (hparams.n_expert_groups > 1) {
|
|
|
+ GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
|
|
|
+ GGML_ASSERT(hparams.n_group_used > 0);
|
|
|
+ GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
|
|
|
+ }
|
|
|
} else {
|
|
|
GGML_ASSERT(hparams.n_expert_used == 0);
|
|
|
+ GGML_ASSERT(hparams.n_expert_groups == 0);
|
|
|
}
|
|
|
|
|
|
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
|
|
@@ -1888,6 +1899,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE2:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
|
|
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
|
|
|
+ ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
|
|
|
+
|
|
|
+ // TODO: when MTP is implemented, this should probably be updated if needed
|
|
|
+ hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 20: type = LLM_TYPE_16B_A1B; break;
|
|
|
+ case 21: type = LLM_TYPE_16B_A1B; break;
|
|
|
+ case 32: type = LLM_TYPE_100B_A6B; break;
|
|
|
+ case 33: type = LLM_TYPE_100B_A6B; break;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_DOTS1:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
@@ -5498,6 +5532,70 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE2:
|
|
|
+ {
|
|
|
+ const int64_t n_ff_exp = hparams.n_ff_exp;
|
|
|
+ const int64_t n_expert_shared = hparams.n_expert_shared;
|
|
|
+
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
|
|
|
+ GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ int flags = 0;
|
|
|
+ if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
|
|
+ // skip all tensors in the NextN layers
|
|
|
+ flags |= TENSOR_SKIP;
|
|
|
+ }
|
|
|
+
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
|
|
|
+
|
|
|
+ layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
|
|
|
+
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
|
|
|
+
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
|
|
|
+
|
|
|
+ if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
|
|
|
+ const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
|
|
|
+
|
|
|
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
|
|
|
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
|
|
|
+
|
|
|
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
|
|
|
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
|
|
|
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
|
|
|
+
|
|
|
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
|
|
|
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
|
|
|
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
|
|
|
+ } else { // Dense layers
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
|
|
|
+ }
|
|
|
+
|
|
|
+ // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
|
|
|
+ if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
|
|
|
+ layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
|
|
|
+ layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
|
|
|
+ layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
|
|
|
+ layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
|
|
|
+ layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
|
|
|
+ layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
|
|
|
+ layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_DOTS1:
|
|
|
{
|
|
|
const int64_t n_ff_exp = hparams.n_ff_exp;
|
|
|
@@ -6353,6 +6451,19 @@ void llama_model::print_info() const {
|
|
|
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
|
|
|
}
|
|
|
|
|
|
+ if (arch == LLM_ARCH_BAILINGMOE2) {
|
|
|
+ LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
|
|
|
+ LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
|
|
+ LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
|
|
+ LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
|
|
|
+ LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
|
|
|
+ LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
|
|
|
+ LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
|
|
|
+ LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
|
|
|
+ LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
|
|
|
+ LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers);
|
|
|
+ }
|
|
|
+
|
|
|
if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
|
|
|
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
|
|
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
|
|
|
@@ -17042,6 +17153,150 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_bailingmoe2 : public llm_graph_context {
|
|
|
+ llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
|
|
+
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ auto * inp_attn = build_attn_inp_kv();
|
|
|
+
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+
|
|
|
+ const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
|
|
|
+ for (int il = 0; il < n_transformer_layers; ++il) {
|
|
|
+ ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ // self_attention
|
|
|
+ {
|
|
|
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
|
|
|
+ cb(cur, "wqkv", il);
|
|
|
+
|
|
|
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
|
|
|
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
|
|
|
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
|
|
|
+
|
|
|
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(Qcur, "Qcur_normed", il);
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
|
+ cb(Kcur, "Kcur_normed", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ cur = build_attn(inp_attn,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_transformer_layers - 1 && inp_out_ids) {
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(sa_out, "sa_out", il);
|
|
|
+
|
|
|
+ // MoE branch
|
|
|
+ cur = build_norm(sa_out,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
|
|
|
+ cur = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ } else {
|
|
|
+ ggml_tensor * moe_out =
|
|
|
+ build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ model.layers[il].ffn_exp_probs_b,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, hparams.expert_weights_norm,
|
|
|
+ true, hparams.expert_weights_scale,
|
|
|
+ (llama_expert_gating_func_type) hparams.expert_gating_func,
|
|
|
+ il);
|
|
|
+ cb(moe_out, "ffn_moe_out", il);
|
|
|
+
|
|
|
+ {
|
|
|
+ ggml_tensor * ffn_shexp = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(ffn_shexp, "ffn_shexp", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, sa_out);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
struct llm_build_dots1 : public llm_graph_context {
|
|
|
llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
@@ -19838,6 +20093,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_bailingmoe>(*this, params);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_BAILINGMOE2:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
|
|
|
+ } break;
|
|
|
case LLM_ARCH_SEED_OSS:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_seed_oss>(*this, params);
|
|
|
@@ -20104,6 +20363,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_EXAONE:
|
|
|
case LLM_ARCH_EXAONE4:
|
|
|
case LLM_ARCH_MINICPM3:
|
|
|
+ case LLM_ARCH_BAILINGMOE2:
|
|
|
case LLM_ARCH_DOTS1:
|
|
|
case LLM_ARCH_HUNYUAN_MOE:
|
|
|
case LLM_ARCH_OPENAI_MOE:
|