|
|
@@ -7655,18 +7655,21 @@ static void llama_convert_tensor_internal(
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
|
|
|
- auto block_size_bytes = ggml_type_size(tensor->type);
|
|
|
+ size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
|
|
|
+ size_t block_size_bytes = ggml_type_size(tensor->type);
|
|
|
|
|
|
GGML_ASSERT(nelements % block_size == 0);
|
|
|
- auto nblocks = nelements / block_size;
|
|
|
- auto blocks_per_thread = nblocks / nthread;
|
|
|
- auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
|
|
-
|
|
|
- for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
|
|
|
- auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
|
|
- auto thr_elems = thr_blocks * block_size; // number of elements for this thread
|
|
|
- auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
|
|
|
+ size_t nblocks = nelements / block_size;
|
|
|
+ size_t blocks_per_thread = nblocks / nthread;
|
|
|
+ size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
|
|
+
|
|
|
+ size_t in_buff_offs = 0;
|
|
|
+ size_t out_buff_offs = 0;
|
|
|
+
|
|
|
+ for (int tnum = 0; tnum < nthread; tnum++) {
|
|
|
+ size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
|
|
+ size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
|
|
|
+ size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
|
|
|
|
|
|
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
|
|
|
if (typ == GGML_TYPE_F16) {
|