|
|
@@ -169,14 +169,27 @@
|
|
|
//
|
|
|
//
|
|
|
|
|
|
-#ifdef __cplusplus
|
|
|
-extern "C" {
|
|
|
+#ifdef GGML_SHARED
|
|
|
+# if defined(_WIN32) && !defined(__MINGW32__)
|
|
|
+# ifdef GGML_BUILD
|
|
|
+# define GGML_API __declspec(dllexport)
|
|
|
+# else
|
|
|
+# define GGML_API __declspec(dllimport)
|
|
|
+# endif
|
|
|
+# else
|
|
|
+# define GGML_API __attribute__ ((visibility ("default")))
|
|
|
+# endif
|
|
|
+#else
|
|
|
+# define GGML_API
|
|
|
#endif
|
|
|
|
|
|
#include <stdint.h>
|
|
|
#include <stddef.h>
|
|
|
#include <stdbool.h>
|
|
|
|
|
|
+#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
|
+#define GGML_FILE_VERSION 1
|
|
|
+
|
|
|
#define GGML_MAX_DIMS 4
|
|
|
#define GGML_MAX_NODES 4096
|
|
|
#define GGML_MAX_PARAMS 16
|
|
|
@@ -184,682 +197,688 @@ extern "C" {
|
|
|
#define GGML_MAX_OPT 4
|
|
|
#define GGML_DEFAULT_N_THREADS 4
|
|
|
|
|
|
+#ifdef __cplusplus
|
|
|
+extern "C" {
|
|
|
+#endif
|
|
|
+
|
|
|
#ifdef __ARM_NEON
|
|
|
-// we use the built-in 16-bit float type
|
|
|
-typedef __fp16 ggml_fp16_t;
|
|
|
+ // we use the built-in 16-bit float type
|
|
|
+ typedef __fp16 ggml_fp16_t;
|
|
|
#else
|
|
|
-typedef uint16_t ggml_fp16_t;
|
|
|
+ typedef uint16_t ggml_fp16_t;
|
|
|
#endif
|
|
|
|
|
|
-// convert FP16 <-> FP32
|
|
|
-float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
|
-ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
|
-
|
|
|
-struct ggml_object;
|
|
|
-struct ggml_context;
|
|
|
-
|
|
|
-enum ggml_type {
|
|
|
- // explicitly numbered values are used in llama.cpp files
|
|
|
- GGML_TYPE_F32 = 0,
|
|
|
- GGML_TYPE_F16 = 1,
|
|
|
- GGML_TYPE_Q4_0 = 2,
|
|
|
- GGML_TYPE_Q4_1 = 3,
|
|
|
- GGML_TYPE_Q4_2 = 4,
|
|
|
- GGML_TYPE_Q4_3 = 5,
|
|
|
- GGML_TYPE_Q8_0 = 6,
|
|
|
- GGML_TYPE_I8,
|
|
|
- GGML_TYPE_I16,
|
|
|
- GGML_TYPE_I32,
|
|
|
- GGML_TYPE_COUNT,
|
|
|
-};
|
|
|
-
|
|
|
-// available tensor operations:
|
|
|
-enum ggml_op {
|
|
|
- GGML_OP_NONE = 0,
|
|
|
-
|
|
|
- GGML_OP_DUP,
|
|
|
- GGML_OP_ADD,
|
|
|
- GGML_OP_SUB,
|
|
|
- GGML_OP_MUL,
|
|
|
- GGML_OP_DIV,
|
|
|
- GGML_OP_SQR,
|
|
|
- GGML_OP_SQRT,
|
|
|
- GGML_OP_SUM,
|
|
|
- GGML_OP_MEAN,
|
|
|
- GGML_OP_REPEAT,
|
|
|
- GGML_OP_ABS,
|
|
|
- GGML_OP_SGN,
|
|
|
- GGML_OP_NEG,
|
|
|
- GGML_OP_STEP,
|
|
|
- GGML_OP_RELU,
|
|
|
- GGML_OP_GELU,
|
|
|
- GGML_OP_SILU,
|
|
|
- GGML_OP_NORM, // normalize
|
|
|
- GGML_OP_RMS_NORM,
|
|
|
-
|
|
|
- GGML_OP_MUL_MAT,
|
|
|
-
|
|
|
- GGML_OP_SCALE,
|
|
|
- GGML_OP_CPY,
|
|
|
- GGML_OP_CONT,
|
|
|
- GGML_OP_RESHAPE,
|
|
|
- GGML_OP_VIEW,
|
|
|
- GGML_OP_PERMUTE,
|
|
|
- GGML_OP_TRANSPOSE,
|
|
|
- GGML_OP_GET_ROWS,
|
|
|
- GGML_OP_DIAG_MASK_INF,
|
|
|
- GGML_OP_SOFT_MAX,
|
|
|
- GGML_OP_ROPE,
|
|
|
- GGML_OP_CONV_1D_1S,
|
|
|
- GGML_OP_CONV_1D_2S,
|
|
|
-
|
|
|
- GGML_OP_FLASH_ATTN,
|
|
|
- GGML_OP_FLASH_FF,
|
|
|
-
|
|
|
- GGML_OP_MAP_UNARY,
|
|
|
- GGML_OP_MAP_BINARY,
|
|
|
-
|
|
|
- GGML_OP_COUNT,
|
|
|
-};
|
|
|
-
|
|
|
-
|
|
|
-// ggml object
|
|
|
-struct ggml_object {
|
|
|
- size_t offs;
|
|
|
- size_t size;
|
|
|
-
|
|
|
- struct ggml_object * next;
|
|
|
-
|
|
|
- char padding[8];
|
|
|
-};
|
|
|
-
|
|
|
-static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
-
|
|
|
-// n-dimensional tensor
|
|
|
-struct ggml_tensor {
|
|
|
- enum ggml_type type;
|
|
|
-
|
|
|
- int n_dims;
|
|
|
- int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
|
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
|
- // nb[0] = sizeof(type)
|
|
|
- // nb[1] = nb[0] * ne[0] + padding
|
|
|
- // nb[i] = nb[i-1] * ne[i-1]
|
|
|
-
|
|
|
- // compute data
|
|
|
- enum ggml_op op;
|
|
|
-
|
|
|
- bool is_param;
|
|
|
-
|
|
|
- struct ggml_tensor * grad;
|
|
|
- struct ggml_tensor * src0;
|
|
|
- struct ggml_tensor * src1;
|
|
|
- struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
|
-
|
|
|
- // thread scheduling
|
|
|
- int n_tasks;
|
|
|
-
|
|
|
- // performance
|
|
|
- int perf_runs;
|
|
|
- int64_t perf_cycles;
|
|
|
- int64_t perf_time_us;
|
|
|
-
|
|
|
- void * data;
|
|
|
- char padding[8];
|
|
|
-};
|
|
|
-
|
|
|
-// computation graph
|
|
|
-struct ggml_cgraph {
|
|
|
- int n_nodes;
|
|
|
- int n_leafs;
|
|
|
- int n_threads;
|
|
|
-
|
|
|
- size_t work_size;
|
|
|
- struct ggml_tensor * work;
|
|
|
-
|
|
|
- struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
|
- struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
|
- struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
|
-
|
|
|
- // performance
|
|
|
- int perf_runs;
|
|
|
- int64_t perf_cycles;
|
|
|
- int64_t perf_time_us;
|
|
|
-};
|
|
|
-
|
|
|
-// scratch buffer
|
|
|
-struct ggml_scratch {
|
|
|
- size_t offs;
|
|
|
- size_t size;
|
|
|
- void * data;
|
|
|
-};
|
|
|
+ // convert FP16 <-> FP32
|
|
|
+ GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
|
+ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
|
+
|
|
|
+ struct ggml_object;
|
|
|
+ struct ggml_context;
|
|
|
+
|
|
|
+ enum ggml_type {
|
|
|
+ GGML_TYPE_F32 = 0,
|
|
|
+ GGML_TYPE_F16 = 1,
|
|
|
+ GGML_TYPE_Q4_0 = 2,
|
|
|
+ GGML_TYPE_Q4_1 = 3,
|
|
|
+ GGML_TYPE_Q4_2 = 4,
|
|
|
+ GGML_TYPE_Q4_3 = 5,
|
|
|
+ GGML_TYPE_Q8_0 = 6,
|
|
|
+ GGML_TYPE_I8,
|
|
|
+ GGML_TYPE_I16,
|
|
|
+ GGML_TYPE_I32,
|
|
|
+ GGML_TYPE_COUNT,
|
|
|
+ };
|
|
|
+
|
|
|
+ // available tensor operations:
|
|
|
+ enum ggml_op {
|
|
|
+ GGML_OP_NONE = 0,
|
|
|
+
|
|
|
+ GGML_OP_DUP,
|
|
|
+ GGML_OP_ADD,
|
|
|
+ GGML_OP_SUB,
|
|
|
+ GGML_OP_MUL,
|
|
|
+ GGML_OP_DIV,
|
|
|
+ GGML_OP_SQR,
|
|
|
+ GGML_OP_SQRT,
|
|
|
+ GGML_OP_SUM,
|
|
|
+ GGML_OP_MEAN,
|
|
|
+ GGML_OP_REPEAT,
|
|
|
+ GGML_OP_ABS,
|
|
|
+ GGML_OP_SGN,
|
|
|
+ GGML_OP_NEG,
|
|
|
+ GGML_OP_STEP,
|
|
|
+ GGML_OP_RELU,
|
|
|
+ GGML_OP_GELU,
|
|
|
+ GGML_OP_SILU,
|
|
|
+ GGML_OP_NORM, // normalize
|
|
|
+ GGML_OP_RMS_NORM,
|
|
|
+
|
|
|
+ GGML_OP_MUL_MAT,
|
|
|
+
|
|
|
+ GGML_OP_SCALE,
|
|
|
+ GGML_OP_CPY,
|
|
|
+ GGML_OP_CONT,
|
|
|
+ GGML_OP_RESHAPE,
|
|
|
+ GGML_OP_VIEW,
|
|
|
+ GGML_OP_PERMUTE,
|
|
|
+ GGML_OP_TRANSPOSE,
|
|
|
+ GGML_OP_GET_ROWS,
|
|
|
+ GGML_OP_DIAG_MASK_INF,
|
|
|
+ GGML_OP_SOFT_MAX,
|
|
|
+ GGML_OP_ROPE,
|
|
|
+ GGML_OP_CONV_1D_1S,
|
|
|
+ GGML_OP_CONV_1D_2S,
|
|
|
+
|
|
|
+ GGML_OP_FLASH_ATTN,
|
|
|
+ GGML_OP_FLASH_FF,
|
|
|
+
|
|
|
+ GGML_OP_MAP_UNARY,
|
|
|
+ GGML_OP_MAP_BINARY,
|
|
|
+
|
|
|
+ GGML_OP_COUNT,
|
|
|
+ };
|
|
|
+
|
|
|
+
|
|
|
+ // ggml object
|
|
|
+ struct ggml_object {
|
|
|
+ size_t offs;
|
|
|
+ size_t size;
|
|
|
+
|
|
|
+ struct ggml_object * next;
|
|
|
+
|
|
|
+ char padding[8];
|
|
|
+ };
|
|
|
+
|
|
|
+ static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
+
|
|
|
+ // n-dimensional tensor
|
|
|
+ struct ggml_tensor {
|
|
|
+ enum ggml_type type;
|
|
|
+
|
|
|
+ int n_dims;
|
|
|
+ int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
|
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
|
+ // nb[0] = sizeof(type)
|
|
|
+ // nb[1] = nb[0] * ne[0] + padding
|
|
|
+ // nb[i] = nb[i-1] * ne[i-1]
|
|
|
+
|
|
|
+ // compute data
|
|
|
+ enum ggml_op op;
|
|
|
+
|
|
|
+ bool is_param;
|
|
|
+
|
|
|
+ struct ggml_tensor * grad;
|
|
|
+ struct ggml_tensor * src0;
|
|
|
+ struct ggml_tensor * src1;
|
|
|
+ struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
|
+
|
|
|
+ // thread scheduling
|
|
|
+ int n_tasks;
|
|
|
+
|
|
|
+ // performance
|
|
|
+ int perf_runs;
|
|
|
+ int64_t perf_cycles;
|
|
|
+ int64_t perf_time_us;
|
|
|
+
|
|
|
+ void * data;
|
|
|
+ char padding[8];
|
|
|
+ };
|
|
|
+
|
|
|
+ // computation graph
|
|
|
+ struct ggml_cgraph {
|
|
|
+ int n_nodes;
|
|
|
+ int n_leafs;
|
|
|
+ int n_threads;
|
|
|
+
|
|
|
+ size_t work_size;
|
|
|
+ struct ggml_tensor * work;
|
|
|
+
|
|
|
+ struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
|
+ struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
|
+ struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
|
+
|
|
|
+ // performance
|
|
|
+ int perf_runs;
|
|
|
+ int64_t perf_cycles;
|
|
|
+ int64_t perf_time_us;
|
|
|
+ };
|
|
|
+
|
|
|
+ // scratch buffer
|
|
|
+ struct ggml_scratch {
|
|
|
+ size_t offs;
|
|
|
+ size_t size;
|
|
|
+ void * data;
|
|
|
+ };
|
|
|
|
|
|
-struct ggml_init_params {
|
|
|
- // memory pool
|
|
|
- size_t mem_size; // bytes
|
|
|
- void * mem_buffer; // if NULL, memory will be allocated internally
|
|
|
- bool no_alloc; // don't allocate memory for the tensor data
|
|
|
-};
|
|
|
+ struct ggml_init_params {
|
|
|
+ // memory pool
|
|
|
+ size_t mem_size; // bytes
|
|
|
+ void * mem_buffer; // if NULL, memory will be allocated internally
|
|
|
+ bool no_alloc; // don't allocate memory for the tensor data
|
|
|
+ };
|
|
|
|
|
|
-void ggml_time_init(void); // call this once at the beginning of the program
|
|
|
-int64_t ggml_time_ms(void);
|
|
|
-int64_t ggml_time_us(void);
|
|
|
-int64_t ggml_cycles(void);
|
|
|
-int64_t ggml_cycles_per_ms(void);
|
|
|
+ // misc
|
|
|
|
|
|
-void ggml_print_object (const struct ggml_object * obj);
|
|
|
-void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
+ GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
|
|
+ GGML_API int64_t ggml_time_ms(void);
|
|
|
+ GGML_API int64_t ggml_time_us(void);
|
|
|
+ GGML_API int64_t ggml_cycles(void);
|
|
|
+ GGML_API int64_t ggml_cycles_per_ms(void);
|
|
|
|
|
|
-int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
|
|
-size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
|
+ GGML_API void ggml_print_object (const struct ggml_object * obj);
|
|
|
+ GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
|
|
-int ggml_blck_size (enum ggml_type type);
|
|
|
-size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
|
-float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
|
+ GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
|
|
+ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
|
|
|
|
-const char * ggml_type_name(enum ggml_type type);
|
|
|
+ GGML_API int ggml_blck_size (enum ggml_type type);
|
|
|
+ GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
|
+ GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
|
|
|
|
-size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
+ GGML_API const char * ggml_type_name(enum ggml_type type);
|
|
|
|
|
|
-bool ggml_is_quantized(enum ggml_type type);
|
|
|
+ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
|
|
-struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
|
-void ggml_free(struct ggml_context * ctx);
|
|
|
+ GGML_API bool ggml_is_quantized(enum ggml_type type);
|
|
|
|
|
|
-size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
+ // main
|
|
|
|
|
|
-size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
|
+ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
|
+ GGML_API void ggml_free(struct ggml_context * ctx);
|
|
|
|
|
|
-struct ggml_tensor * ggml_new_tensor(
|
|
|
- struct ggml_context * ctx,
|
|
|
- enum ggml_type type,
|
|
|
- int n_dims,
|
|
|
- const int64_t *ne);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_new_tensor_1d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- enum ggml_type type,
|
|
|
- int64_t ne0);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_new_tensor_2d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- enum ggml_type type,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_new_tensor_3d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- enum ggml_type type,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1,
|
|
|
- int64_t ne2);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_new_tensor_4d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- enum ggml_type type,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1,
|
|
|
- int64_t ne2,
|
|
|
- int64_t ne3);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
|
-struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
-struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
|
-struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
|
-struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
-
|
|
|
-int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
|
-void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
-
|
|
|
-float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
|
-void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
-
|
|
|
- void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
|
-float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
-
|
|
|
-//
|
|
|
-// operations on tensors with backpropagation
|
|
|
-//
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_dup(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_add(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
+ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
|
|
+ GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
|
|
|
|
-struct ggml_tensor * ggml_add_inplace(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_tensor(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ enum ggml_type type,
|
|
|
+ int n_dims,
|
|
|
+ const int64_t *ne);
|
|
|
|
|
|
-struct ggml_tensor * ggml_sub(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ enum ggml_type type,
|
|
|
+ int64_t ne0);
|
|
|
|
|
|
-struct ggml_tensor * ggml_mul(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ enum ggml_type type,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1);
|
|
|
|
|
|
-struct ggml_tensor * ggml_div(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_sqr(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_sqrt(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// return scalar
|
|
|
-// TODO: compute sum along rows
|
|
|
-struct ggml_tensor * ggml_sum(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// mean along rows
|
|
|
-struct ggml_tensor * ggml_mean(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// if a is the same shape as b, and a is not parameter, return a
|
|
|
-// otherwise, return a new tensor: repeat(a) to fit in b
|
|
|
-struct ggml_tensor * ggml_repeat(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_abs(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_sgn(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_neg(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_step(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_relu(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// TODO: double-check this computation is correct
|
|
|
-struct ggml_tensor * ggml_gelu(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_silu(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// normalize along rows
|
|
|
-// TODO: eps is hardcoded to 1e-5 for now
|
|
|
-struct ggml_tensor * ggml_norm(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_rms_norm(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// A: m rows, n columns
|
|
|
-// B: p rows, n columns (i.e. we transpose it internally)
|
|
|
-// result is m columns, p rows
|
|
|
-struct ggml_tensor * ggml_mul_mat(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-//
|
|
|
-// operations on tensors without backpropagation
|
|
|
-//
|
|
|
-
|
|
|
-// in-place, returns view(a)
|
|
|
-struct ggml_tensor * ggml_scale(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-// a -> b, return view(b)
|
|
|
-struct ggml_tensor * ggml_cpy(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-// make contiguous
|
|
|
-struct ggml_tensor * ggml_cont(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// return view(a), b specifies the new shape
|
|
|
-// TODO: when we start computing gradient, make a copy instead of view
|
|
|
-struct ggml_tensor * ggml_reshape(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-// return view(a)
|
|
|
-// TODO: when we start computing gradient, make a copy instead of view
|
|
|
-struct ggml_tensor * ggml_reshape_2d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1);
|
|
|
-
|
|
|
-// return view(a)
|
|
|
-// TODO: when we start computing gradient, make a copy instead of view
|
|
|
-struct ggml_tensor * ggml_reshape_3d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1,
|
|
|
- int64_t ne2);
|
|
|
-
|
|
|
-// offset in bytes
|
|
|
-struct ggml_tensor * ggml_view_1d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int64_t ne0,
|
|
|
- size_t offset);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_view_2d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1,
|
|
|
- size_t nb1, // row stride in bytes
|
|
|
- size_t offset);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_view_3d(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int64_t ne0,
|
|
|
- int64_t ne1,
|
|
|
- int64_t ne2,
|
|
|
- size_t nb1, // row stride in bytes
|
|
|
- size_t nb2, // slice stride in bytes
|
|
|
- size_t offset);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_permute(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int axis0,
|
|
|
- int axis1,
|
|
|
- int axis2,
|
|
|
- int axis3);
|
|
|
-
|
|
|
-// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
|
-struct ggml_tensor * ggml_transpose(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_get_rows(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-// set elements above the diagonal to -INF
|
|
|
-// in-place, returns view(a)
|
|
|
-struct ggml_tensor * ggml_diag_mask_inf(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int n_past);
|
|
|
-
|
|
|
-// in-place, returns view(a)
|
|
|
-struct ggml_tensor * ggml_soft_max(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a);
|
|
|
-
|
|
|
-// rotary position embedding
|
|
|
-// in-place, returns view(a)
|
|
|
-// if mode & 1 == 1, skip n_past elements
|
|
|
-// if mode & 2 == 1, GPT-NeoX style
|
|
|
-// TODO: avoid creating a new tensor every time
|
|
|
-struct ggml_tensor * ggml_rope(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- int n_past,
|
|
|
- int n_dims,
|
|
|
- int mode);
|
|
|
-
|
|
|
-// padding = 1
|
|
|
-// TODO: we don't support extra parameters for now
|
|
|
-// that's why we are hard-coding the stride, padding, and dilation
|
|
|
-// not great ..
|
|
|
-struct ggml_tensor * ggml_conv_1d_1s(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_conv_1d_2s(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_flash_attn(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * q,
|
|
|
- struct ggml_tensor * k,
|
|
|
- struct ggml_tensor * v,
|
|
|
- bool masked);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_flash_ff(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b0,
|
|
|
- struct ggml_tensor * b1,
|
|
|
- struct ggml_tensor * c0,
|
|
|
- struct ggml_tensor * c1);
|
|
|
-
|
|
|
-// Mapping operations
|
|
|
-typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
|
|
-typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_map_unary_f32(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- const ggml_unary_op_f32_t fun);
|
|
|
-
|
|
|
-struct ggml_tensor * ggml_map_binary_f32(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * a,
|
|
|
- struct ggml_tensor * b,
|
|
|
- const ggml_binary_op_f32_t fun);
|
|
|
-
|
|
|
-//
|
|
|
-// automatic differentiation
|
|
|
-//
|
|
|
-
|
|
|
-void ggml_set_param(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_tensor * tensor);
|
|
|
-
|
|
|
-void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
|
-
|
|
|
-struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
|
-struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
|
-
|
|
|
-void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
|
-void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
|
-
|
|
|
-// print info and performance information for the graph
|
|
|
-void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
-
|
|
|
-// dump the graph into a file using the dot format
|
|
|
-void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
-
|
|
|
-//
|
|
|
-// optimization
|
|
|
-//
|
|
|
-
|
|
|
-// optimization methods
|
|
|
-enum ggml_opt_type {
|
|
|
- GGML_OPT_ADAM,
|
|
|
- GGML_OPT_LBFGS,
|
|
|
-};
|
|
|
-
|
|
|
-// linesearch methods
|
|
|
-enum ggml_linesearch {
|
|
|
- GGML_LINESEARCH_DEFAULT = 1,
|
|
|
-
|
|
|
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
|
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
|
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
|
-};
|
|
|
-
|
|
|
-// optimization return values
|
|
|
-enum ggml_opt_result {
|
|
|
- GGML_OPT_OK = 0,
|
|
|
- GGML_OPT_DID_NOT_CONVERGE,
|
|
|
- GGML_OPT_NO_CONTEXT,
|
|
|
- GGML_OPT_INVALID_WOLFE,
|
|
|
- GGML_OPT_FAIL,
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ enum ggml_type type,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1,
|
|
|
+ int64_t ne2);
|
|
|
|
|
|
- GGML_LINESEARCH_FAIL = -128,
|
|
|
- GGML_LINESEARCH_MINIMUM_STEP,
|
|
|
- GGML_LINESEARCH_MAXIMUM_STEP,
|
|
|
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
|
- GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
|
-};
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ enum ggml_type type,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1,
|
|
|
+ int64_t ne2,
|
|
|
+ int64_t ne3);
|
|
|
|
|
|
-// optimization parameters
|
|
|
-//
|
|
|
-// see ggml.c (ggml_opt_default_params) for default values
|
|
|
-//
|
|
|
-struct ggml_opt_params {
|
|
|
- enum ggml_opt_type type;
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
|
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
+ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
|
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
|
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
+
|
|
|
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
|
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
+
|
|
|
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
|
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
|
|
- int n_threads;
|
|
|
+ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
|
+ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
|
|
- // delta-based convergence test
|
|
|
//
|
|
|
- // if past == 0 - disabled
|
|
|
- // if past > 0:
|
|
|
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
|
+ // operations on tensors with backpropagation
|
|
|
//
|
|
|
- int past;
|
|
|
- float delta;
|
|
|
|
|
|
- // maximum number of iterations without improvement
|
|
|
+ GGML_API struct ggml_tensor * ggml_dup(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_add(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_add_inplace(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_sub(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_mul(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_div(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_sqr(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_sqrt(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // return scalar
|
|
|
+ // TODO: compute sum along rows
|
|
|
+ GGML_API struct ggml_tensor * ggml_sum(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // mean along rows
|
|
|
+ GGML_API struct ggml_tensor * ggml_mean(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // if a is the same shape as b, and a is not parameter, return a
|
|
|
+ // otherwise, return a new tensor: repeat(a) to fit in b
|
|
|
+ GGML_API struct ggml_tensor * ggml_repeat(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_abs(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_sgn(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_neg(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_step(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_relu(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // TODO: double-check this computation is correct
|
|
|
+ GGML_API struct ggml_tensor * ggml_gelu(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_silu(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // normalize along rows
|
|
|
+ // TODO: eps is hardcoded to 1e-5 for now
|
|
|
+ GGML_API struct ggml_tensor * ggml_norm(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_rms_norm(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // A: m rows, n columns
|
|
|
+ // B: p rows, n columns (i.e. we transpose it internally)
|
|
|
+ // result is m columns, p rows
|
|
|
+ GGML_API struct ggml_tensor * ggml_mul_mat(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
//
|
|
|
- // if 0 - disabled
|
|
|
- // if > 0:
|
|
|
- // assume convergence if no cost improvement in this number of iterations
|
|
|
+ // operations on tensors without backpropagation
|
|
|
//
|
|
|
- int max_no_improvement;
|
|
|
|
|
|
- bool print_forward_graph;
|
|
|
- bool print_backward_graph;
|
|
|
+ // in-place, returns view(a)
|
|
|
+ GGML_API struct ggml_tensor * ggml_scale(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ // a -> b, return view(b)
|
|
|
+ GGML_API struct ggml_tensor * ggml_cpy(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ // make contiguous
|
|
|
+ GGML_API struct ggml_tensor * ggml_cont(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // return view(a), b specifies the new shape
|
|
|
+ // TODO: when we start computing gradient, make a copy instead of view
|
|
|
+ GGML_API struct ggml_tensor * ggml_reshape(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ // return view(a)
|
|
|
+ // TODO: when we start computing gradient, make a copy instead of view
|
|
|
+ GGML_API struct ggml_tensor * ggml_reshape_2d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1);
|
|
|
+
|
|
|
+ // return view(a)
|
|
|
+ // TODO: when we start computing gradient, make a copy instead of view
|
|
|
+ GGML_API struct ggml_tensor * ggml_reshape_3d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1,
|
|
|
+ int64_t ne2);
|
|
|
+
|
|
|
+ // offset in bytes
|
|
|
+ GGML_API struct ggml_tensor * ggml_view_1d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int64_t ne0,
|
|
|
+ size_t offset);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_view_2d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1,
|
|
|
+ size_t nb1, // row stride in bytes
|
|
|
+ size_t offset);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_view_3d(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int64_t ne0,
|
|
|
+ int64_t ne1,
|
|
|
+ int64_t ne2,
|
|
|
+ size_t nb1, // row stride in bytes
|
|
|
+ size_t nb2, // slice stride in bytes
|
|
|
+ size_t offset);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_permute(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int axis0,
|
|
|
+ int axis1,
|
|
|
+ int axis2,
|
|
|
+ int axis3);
|
|
|
+
|
|
|
+ // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
|
+ GGML_API struct ggml_tensor * ggml_transpose(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_get_rows(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ // set elements above the diagonal to -INF
|
|
|
+ // in-place, returns view(a)
|
|
|
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int n_past);
|
|
|
+
|
|
|
+ // in-place, returns view(a)
|
|
|
+ GGML_API struct ggml_tensor * ggml_soft_max(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a);
|
|
|
+
|
|
|
+ // rotary position embedding
|
|
|
+ // in-place, returns view(a)
|
|
|
+ // if mode & 1 == 1, skip n_past elements
|
|
|
+ // if mode & 2 == 1, GPT-NeoX style
|
|
|
+ // TODO: avoid creating a new tensor every time
|
|
|
+ GGML_API struct ggml_tensor * ggml_rope(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ int n_past,
|
|
|
+ int n_dims,
|
|
|
+ int mode);
|
|
|
+
|
|
|
+ // padding = 1
|
|
|
+ // TODO: we don't support extra parameters for now
|
|
|
+ // that's why we are hard-coding the stride, padding, and dilation
|
|
|
+ // not great ..
|
|
|
+ GGML_API struct ggml_tensor * ggml_conv_1d_1s(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_conv_1d_2s(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_flash_attn(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * q,
|
|
|
+ struct ggml_tensor * k,
|
|
|
+ struct ggml_tensor * v,
|
|
|
+ bool masked);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_flash_ff(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b0,
|
|
|
+ struct ggml_tensor * b1,
|
|
|
+ struct ggml_tensor * c0,
|
|
|
+ struct ggml_tensor * c1);
|
|
|
+
|
|
|
+ // Mapping operations
|
|
|
+ GGML_API typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
|
|
+ GGML_API typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ const ggml_unary_op_f32_t fun);
|
|
|
+
|
|
|
+ GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * a,
|
|
|
+ struct ggml_tensor * b,
|
|
|
+ const ggml_binary_op_f32_t fun);
|
|
|
|
|
|
- // ADAM parameters
|
|
|
- struct {
|
|
|
- int n_iter;
|
|
|
+ //
|
|
|
+ // automatic differentiation
|
|
|
+ //
|
|
|
|
|
|
- float alpha; // learning rate
|
|
|
- float beta1;
|
|
|
- float beta2;
|
|
|
- float eps; // epsilon for numerical stability
|
|
|
- float eps_f; // epsilon for convergence test
|
|
|
- float eps_g; // epsilon for convergence test
|
|
|
- } adam;
|
|
|
+ GGML_API void ggml_set_param(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_tensor * tensor);
|
|
|
|
|
|
- // LBFGS parameters
|
|
|
- struct {
|
|
|
- int m; // number of corrections to approximate the inv. Hessian
|
|
|
- int n_iter;
|
|
|
- int max_linesearch;
|
|
|
+ GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
|
|
|
|
- float eps; // convergence tolerance
|
|
|
- float ftol; // line search tolerance
|
|
|
- float wolfe;
|
|
|
- float min_step;
|
|
|
- float max_step;
|
|
|
+ GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
|
+ GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
|
|
|
|
- enum ggml_linesearch linesearch;
|
|
|
- } lbfgs;
|
|
|
-};
|
|
|
+ GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
|
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
|
|
|
|
-struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
+ // print info and performance information for the graph
|
|
|
+ GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
|
|
-// optimize the function defined by the tensor f
|
|
|
-enum ggml_opt_result ggml_opt(
|
|
|
- struct ggml_context * ctx,
|
|
|
- struct ggml_opt_params params,
|
|
|
- struct ggml_tensor * f);
|
|
|
+ // dump the graph into a file using the dot format
|
|
|
+ GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
|
|
-//
|
|
|
-// quantization
|
|
|
-//
|
|
|
+ //
|
|
|
+ // optimization
|
|
|
+ //
|
|
|
|
|
|
-size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
-size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
-size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
-size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
+ // optimization methods
|
|
|
+ enum ggml_opt_type {
|
|
|
+ GGML_OPT_ADAM,
|
|
|
+ GGML_OPT_LBFGS,
|
|
|
+ };
|
|
|
+
|
|
|
+ // linesearch methods
|
|
|
+ enum ggml_linesearch {
|
|
|
+ GGML_LINESEARCH_DEFAULT = 1,
|
|
|
+
|
|
|
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
|
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
|
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
|
+ };
|
|
|
+
|
|
|
+ // optimization return values
|
|
|
+ enum ggml_opt_result {
|
|
|
+ GGML_OPT_OK = 0,
|
|
|
+ GGML_OPT_DID_NOT_CONVERGE,
|
|
|
+ GGML_OPT_NO_CONTEXT,
|
|
|
+ GGML_OPT_INVALID_WOLFE,
|
|
|
+ GGML_OPT_FAIL,
|
|
|
+
|
|
|
+ GGML_LINESEARCH_FAIL = -128,
|
|
|
+ GGML_LINESEARCH_MINIMUM_STEP,
|
|
|
+ GGML_LINESEARCH_MAXIMUM_STEP,
|
|
|
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
|
+ GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
|
+ };
|
|
|
+
|
|
|
+ // optimization parameters
|
|
|
+ //
|
|
|
+ // see ggml.c (ggml_opt_default_params) for default values
|
|
|
+ //
|
|
|
+ struct ggml_opt_params {
|
|
|
+ enum ggml_opt_type type;
|
|
|
+
|
|
|
+ int n_threads;
|
|
|
+
|
|
|
+ // delta-based convergence test
|
|
|
+ //
|
|
|
+ // if past == 0 - disabled
|
|
|
+ // if past > 0:
|
|
|
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
|
+ //
|
|
|
+ int past;
|
|
|
+ float delta;
|
|
|
+
|
|
|
+ // maximum number of iterations without improvement
|
|
|
+ //
|
|
|
+ // if 0 - disabled
|
|
|
+ // if > 0:
|
|
|
+ // assume convergence if no cost improvement in this number of iterations
|
|
|
+ //
|
|
|
+ int max_no_improvement;
|
|
|
+
|
|
|
+ bool print_forward_graph;
|
|
|
+ bool print_backward_graph;
|
|
|
+
|
|
|
+ // ADAM parameters
|
|
|
+ struct {
|
|
|
+ int n_iter;
|
|
|
+
|
|
|
+ float alpha; // learning rate
|
|
|
+ float beta1;
|
|
|
+ float beta2;
|
|
|
+ float eps; // epsilon for numerical stability
|
|
|
+ float eps_f; // epsilon for convergence test
|
|
|
+ float eps_g; // epsilon for convergence test
|
|
|
+ } adam;
|
|
|
+
|
|
|
+ // LBFGS parameters
|
|
|
+ struct {
|
|
|
+ int m; // number of corrections to approximate the inv. Hessian
|
|
|
+ int n_iter;
|
|
|
+ int max_linesearch;
|
|
|
+
|
|
|
+ float eps; // convergence tolerance
|
|
|
+ float ftol; // line search tolerance
|
|
|
+ float wolfe;
|
|
|
+ float min_step;
|
|
|
+ float max_step;
|
|
|
+
|
|
|
+ enum ggml_linesearch linesearch;
|
|
|
+ } lbfgs;
|
|
|
+ };
|
|
|
+
|
|
|
+ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
+
|
|
|
+ // optimize the function defined by the tensor f
|
|
|
+ GGML_API enum ggml_opt_result ggml_opt(
|
|
|
+ struct ggml_context * ctx,
|
|
|
+ struct ggml_opt_params params,
|
|
|
+ struct ggml_tensor * f);
|
|
|
|
|
|
-size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
|
|
+ //
|
|
|
+ // quantization
|
|
|
+ //
|
|
|
|
|
|
-//
|
|
|
-// system info
|
|
|
-//
|
|
|
+ GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
+ GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
+ GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
+ GGML_API size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
|
|
|
-int ggml_cpu_has_avx(void);
|
|
|
-int ggml_cpu_has_avx2(void);
|
|
|
-int ggml_cpu_has_avx512(void);
|
|
|
-int ggml_cpu_has_avx512_vbmi(void);
|
|
|
-int ggml_cpu_has_avx512_vnni(void);
|
|
|
-int ggml_cpu_has_fma(void);
|
|
|
-int ggml_cpu_has_neon(void);
|
|
|
-int ggml_cpu_has_arm_fma(void);
|
|
|
-int ggml_cpu_has_f16c(void);
|
|
|
-int ggml_cpu_has_fp16_va(void);
|
|
|
-int ggml_cpu_has_wasm_simd(void);
|
|
|
-int ggml_cpu_has_blas(void);
|
|
|
-int ggml_cpu_has_cublas(void);
|
|
|
-int ggml_cpu_has_sse3(void);
|
|
|
-int ggml_cpu_has_vsx(void);
|
|
|
+ GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
|
|
|
|
|
+ //
|
|
|
+ // system info
|
|
|
+ //
|
|
|
|
|
|
-//
|
|
|
-// Internal types and functions exposed for tests and benchmarks
|
|
|
-//
|
|
|
+ GGML_API int ggml_cpu_has_avx (void);
|
|
|
+ GGML_API int ggml_cpu_has_avx2 (void);
|
|
|
+ GGML_API int ggml_cpu_has_avx512 (void);
|
|
|
+ GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
|
|
+ GGML_API int ggml_cpu_has_avx512_vnni(void);
|
|
|
+ GGML_API int ggml_cpu_has_fma (void);
|
|
|
+ GGML_API int ggml_cpu_has_neon (void);
|
|
|
+ GGML_API int ggml_cpu_has_arm_fma (void);
|
|
|
+ GGML_API int ggml_cpu_has_f16c (void);
|
|
|
+ GGML_API int ggml_cpu_has_fp16_va (void);
|
|
|
+ GGML_API int ggml_cpu_has_wasm_simd (void);
|
|
|
+ GGML_API int ggml_cpu_has_blas (void);
|
|
|
+ GGML_API int ggml_cpu_has_cublas (void);
|
|
|
+ GGML_API int ggml_cpu_has_sse3 (void);
|
|
|
+ GGML_API int ggml_cpu_has_vsx (void);
|
|
|
+
|
|
|
+
|
|
|
+ //
|
|
|
+ // Internal types and functions exposed for tests and benchmarks
|
|
|
+ //
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
-// restrict not standard in C++
|
|
|
+ // restrict not standard in C++
|
|
|
#define GGML_RESTRICT
|
|
|
#else
|
|
|
#define GGML_RESTRICT restrict
|
|
|
#endif
|
|
|
-typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
|
|
-typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
|
|
-typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
|
|
-
|
|
|
-typedef struct {
|
|
|
- dequantize_row_q_t dequantize_row_q;
|
|
|
- quantize_row_q_t quantize_row_q;
|
|
|
- quantize_row_q_t quantize_row_q_reference;
|
|
|
- quantize_row_q_t quantize_row_q_dot;
|
|
|
- vec_dot_q_t vec_dot_q;
|
|
|
-} quantize_fns_t;
|
|
|
-
|
|
|
-quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
|
|
+ typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
|
|
+ typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
|
|
+ typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
|
|
+
|
|
|
+ typedef struct {
|
|
|
+ dequantize_row_q_t dequantize_row_q;
|
|
|
+ quantize_row_q_t quantize_row_q;
|
|
|
+ quantize_row_q_t quantize_row_q_reference;
|
|
|
+ quantize_row_q_t quantize_row_q_dot;
|
|
|
+ vec_dot_q_t vec_dot_q;
|
|
|
+ } quantize_fns_t;
|
|
|
+
|
|
|
+ quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
}
|