|
|
@@ -19,6 +19,11 @@
|
|
|
#ifdef GGML_USE_METAL
|
|
|
#include "ggml-metal.h"
|
|
|
#endif
|
|
|
+#ifdef GGML_USE_K_QUANTS
|
|
|
+#ifndef QK_K
|
|
|
+#define QK_K 256
|
|
|
+#endif
|
|
|
+#endif
|
|
|
|
|
|
#include <array>
|
|
|
#include <ctime>
|
|
|
@@ -2491,6 +2496,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
} else {
|
|
|
new_type = quantized_type;
|
|
|
#ifdef GGML_USE_K_QUANTS
|
|
|
+ if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
|
|
+ quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
|
|
+ int nx = tensor.ne.at(0);
|
|
|
+ int ny = tensor.ne.at(0);
|
|
|
+ if (nx % QK_K != 0 || ny % QK_K != 0) {
|
|
|
+ fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K);
|
|
|
+ fprintf(stderr, "This is required to be able to use k-quants for now!\n");
|
|
|
+ fprintf(stderr, "========================================================================================\n\n");
|
|
|
+ throw std::runtime_error("Unsupported tensor size encountered\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
if (tensor.name == "output.weight") {
|
|
|
new_type = GGML_TYPE_Q6_K;
|
|
|
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|