|
|
@@ -2636,6 +2636,7 @@ static __global__ void mul_mat_q(
|
|
|
|
|
|
ids_dst_shared[j] = j;
|
|
|
}
|
|
|
+ __syncthreads();
|
|
|
|
|
|
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
|
|
|
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
|
|
|
@@ -2664,6 +2665,7 @@ static __global__ void mul_mat_q(
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
+ // __syncthreads(); // There is no previous tile that could cause a race condition.
|
|
|
#pragma unroll
|
|
|
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
|
|
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
|
|
@@ -2674,6 +2676,7 @@ static __global__ void mul_mat_q(
|
|
|
|
|
|
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
|
|
}
|
|
|
+ __syncthreads();
|
|
|
}
|
|
|
|
|
|
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
|
|
@@ -2740,6 +2743,7 @@ static __global__ void mul_mat_q(
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
+ __syncthreads();
|
|
|
#pragma unroll
|
|
|
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
|
|
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
|
|
@@ -2750,6 +2754,7 @@ static __global__ void mul_mat_q(
|
|
|
|
|
|
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
|
|
}
|
|
|
+ __syncthreads();
|
|
|
}
|
|
|
|
|
|
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|
|
|
@@ -2805,6 +2810,7 @@ static __global__ void mul_mat_q(
|
|
|
}
|
|
|
|
|
|
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
|
|
|
+ __syncthreads();
|
|
|
#pragma unroll
|
|
|
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
|
|
|
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
|
|
|
@@ -2815,6 +2821,7 @@ static __global__ void mul_mat_q(
|
|
|
|
|
|
ids_dst_shared[j] = j;
|
|
|
}
|
|
|
+ __syncthreads();
|
|
|
}
|
|
|
|
|
|
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
|