|
|
@@ -0,0 +1,341 @@
|
|
|
+#include "clip.h"
|
|
|
+#include "clip-impl.h"
|
|
|
+#include "mtmd.h"
|
|
|
+
|
|
|
+#include "llama.h"
|
|
|
+
|
|
|
+#include <algorithm>
|
|
|
+#include <cerrno>
|
|
|
+#include <cstdio>
|
|
|
+#include <cstdlib>
|
|
|
+#include <cstring>
|
|
|
+#include <limits>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+struct mtmd_context {
|
|
|
+ struct clip_ctx * ctx_clip;
|
|
|
+ const struct llama_model * text_model;
|
|
|
+ std::vector<float> image_embd_v; // image embedding vector
|
|
|
+ bool print_timings;
|
|
|
+ int n_threads;
|
|
|
+ std::string image_marker;
|
|
|
+
|
|
|
+ // TODO @ngxson : add timings
|
|
|
+
|
|
|
+ mtmd_context(const char * mmproj_fname,
|
|
|
+ const llama_model * text_model,
|
|
|
+ const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
|
|
|
+ clip_context_params ctx_clip_params;
|
|
|
+ ctx_clip_params.use_gpu = ctx_params.use_gpu;
|
|
|
+ ctx_clip_params.verbosity = ctx_params.verbosity;
|
|
|
+ ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
|
|
|
+ if (!ctx_clip) {
|
|
|
+ throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
|
|
|
+ }
|
|
|
+ this->text_model = text_model;
|
|
|
+ }
|
|
|
+
|
|
|
+ ~mtmd_context() {
|
|
|
+ clip_free(ctx_clip);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+struct mtmd_image_tokens_data {
|
|
|
+ clip_image_f32_batch_ptr batch_f32; // preprocessed image patches
|
|
|
+};
|
|
|
+
|
|
|
+struct mtmd_image_tokens {
|
|
|
+ uint32_t nx; // number of tokens in x direction
|
|
|
+ uint32_t ny; // number of tokens in y direction
|
|
|
+ uint32_t n_tokens() const { return nx * ny; }
|
|
|
+ clip_image_f32_batch_ptr batch_f32; // preprocessed image patches
|
|
|
+};
|
|
|
+
|
|
|
+mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
|
|
+ const struct llama_model * text_model,
|
|
|
+ const struct mtmd_context_params ctx_params) {
|
|
|
+ try {
|
|
|
+ return new mtmd_context(mmproj_fname, text_model, ctx_params);
|
|
|
+ } catch (const std::exception & e) {
|
|
|
+ LOG_ERR("%s: error: %s\n", __func__, e.what());
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void mtmd_free(mtmd_context * ctx) {
|
|
|
+ if (ctx) {
|
|
|
+ delete ctx;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// copied from common_tokenize
|
|
|
+static std::vector<llama_token> mtmd_tokenize_text_internal(
|
|
|
+ const struct llama_vocab * vocab,
|
|
|
+ const std::string & text,
|
|
|
+ bool add_special,
|
|
|
+ bool parse_special) {
|
|
|
+ // upper limit for the number of tokens
|
|
|
+ int n_tokens = text.length() + 2 * add_special;
|
|
|
+ std::vector<llama_token> result(n_tokens);
|
|
|
+ n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
|
+ if (n_tokens < 0) {
|
|
|
+ result.resize(-n_tokens);
|
|
|
+ int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
|
+ GGML_ASSERT(check == -n_tokens);
|
|
|
+ } else {
|
|
|
+ result.resize(n_tokens);
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
|
|
|
+ const mtmd_input_text & text,
|
|
|
+ const std::vector<mtmd_bitmap> & bitmaps) {
|
|
|
+ mtmd_input_chunks * output = new mtmd_input_chunks;
|
|
|
+ auto vocab = llama_model_get_vocab(ctx->text_model);
|
|
|
+
|
|
|
+ std::string prompt_modified(text.text);
|
|
|
+ std::string marker_modified(ctx->image_marker);
|
|
|
+ projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
|
|
|
+ // a bit hacky here, but works for now
|
|
|
+ // for some models, we need to add prefix and suffix to the image embeddings
|
|
|
+ if (proj_type == PROJECTOR_TYPE_GEMMA3) {
|
|
|
+ // <start_of_image> ... (image embeddings) ... <end_of_image>
|
|
|
+ marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
|
|
|
+ string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
|
|
|
+ output->clear();
|
|
|
+ output->reserve(parts.size());
|
|
|
+
|
|
|
+ size_t i_img = 0;
|
|
|
+
|
|
|
+ for (const auto & part : parts) {
|
|
|
+ //printf("tokenizing part: %s\n", part.c_str());
|
|
|
+ bool add_bos = &parts.front() == ∂
|
|
|
+ auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
|
|
|
+ if (tokens.empty()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ mtmd_input_chunk chunk{
|
|
|
+ MTMD_INPUT_CHUNK_TYPE_TEXT,
|
|
|
+ std::move(tokens),
|
|
|
+ {},
|
|
|
+ };
|
|
|
+ output->emplace_back(std::move(chunk));
|
|
|
+
|
|
|
+ if (&parts.back() != &part) {
|
|
|
+ // add image token to middle of 2 parts
|
|
|
+
|
|
|
+ if (i_img >= bitmaps.size()) {
|
|
|
+ LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ // shim layer
|
|
|
+ clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
|
+ img_u8->nx = bitmaps[i_img].nx;
|
|
|
+ img_u8->ny = bitmaps[i_img].ny;
|
|
|
+ img_u8->buf.resize(bitmaps[i_img].data.size());
|
|
|
+ std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
|
|
|
+
|
|
|
+ // preprocess image
|
|
|
+ clip_image_f32_batch_ptr batch_f32(new clip_image_f32_batch);
|
|
|
+ bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), batch_f32.get());
|
|
|
+ if (!ok) {
|
|
|
+ LOG_ERR("Unable to preprocess image\n");
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
|
|
|
+ image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
|
|
|
+ image_tokens->ny = 1; // TODO
|
|
|
+ image_tokens->batch_f32 = std::move(batch_f32);
|
|
|
+
|
|
|
+ mtmd_input_chunk chunk{
|
|
|
+ MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
|
|
+ {},
|
|
|
+ image_tokens,
|
|
|
+ };
|
|
|
+ output->emplace_back(std::move(chunk));
|
|
|
+ i_img++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return output;
|
|
|
+}
|
|
|
+
|
|
|
+void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
|
|
|
+ for (auto & chunk : *chunks) {
|
|
|
+ if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
|
|
|
+ delete chunk.tokens_image;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ delete chunks;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
|
|
|
+ int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
|
|
|
+ ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
|
|
|
+ bool ok = clip_image_batch_encode(
|
|
|
+ ctx->ctx_clip,
|
|
|
+ ctx->n_threads,
|
|
|
+ image_tokens->batch_f32.get(),
|
|
|
+ ctx->image_embd_v.data());
|
|
|
+ return ok ? 0 : 1;
|
|
|
+}
|
|
|
+
|
|
|
+float * mtmd_get_output_embd(mtmd_context * ctx) {
|
|
|
+ return ctx->image_embd_v.data();
|
|
|
+}
|
|
|
+
|
|
|
+size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
|
|
|
+ size_t n_tokens = 0;
|
|
|
+ for (auto & chunk : *chunks) {
|
|
|
+ if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
|
+ n_tokens += chunk.tokens_text.size();
|
|
|
+ } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
|
+ n_tokens += chunk.tokens_image->n_tokens();
|
|
|
+ } else {
|
|
|
+ GGML_ASSERT(false && "chunk type not supported");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return n_tokens;
|
|
|
+}
|
|
|
+
|
|
|
+// helper struct to make working with embd batch easier
|
|
|
+// note: this will be removed after llama_batch_ext refactoring
|
|
|
+struct decode_embd_batch {
|
|
|
+ std::vector<llama_pos> pos;
|
|
|
+ std::vector<int32_t> n_seq_id;
|
|
|
+ std::vector<llama_seq_id> seq_id_0;
|
|
|
+ std::vector<llama_seq_id *> seq_ids;
|
|
|
+ std::vector<int8_t> logits;
|
|
|
+ llama_batch batch;
|
|
|
+ decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
|
|
+ pos .resize(n_tokens);
|
|
|
+ n_seq_id.resize(n_tokens);
|
|
|
+ seq_ids .resize(n_tokens + 1);
|
|
|
+ logits .resize(n_tokens);
|
|
|
+ seq_id_0.resize(1);
|
|
|
+ seq_id_0[0] = seq_id;
|
|
|
+ seq_ids [n_tokens] = nullptr;
|
|
|
+ batch = {
|
|
|
+ /*n_tokens =*/ n_tokens,
|
|
|
+ /*tokens =*/ nullptr,
|
|
|
+ /*embd =*/ embd,
|
|
|
+ /*pos =*/ pos.data(),
|
|
|
+ /*n_seq_id =*/ n_seq_id.data(),
|
|
|
+ /*seq_id =*/ seq_ids.data(),
|
|
|
+ /*logits =*/ logits.data(),
|
|
|
+ };
|
|
|
+ for (int i = 0; i < n_tokens; i++) {
|
|
|
+ batch.pos [i] = pos_0 + i;
|
|
|
+ batch.n_seq_id[i] = 1;
|
|
|
+ batch.seq_id [i] = seq_id_0.data();
|
|
|
+ batch.logits [i] = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+int32_t mtmd_helper_eval(mtmd_context * ctx,
|
|
|
+ llama_context * lctx,
|
|
|
+ mtmd_input_chunks * chunks,
|
|
|
+ llama_pos pos0,
|
|
|
+ llama_seq_id seq_id,
|
|
|
+ int32_t n_batch) {
|
|
|
+ int32_t ret;
|
|
|
+ llama_pos n_past = pos0;
|
|
|
+ llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
|
|
|
+
|
|
|
+ for (auto & chunk : *chunks) {
|
|
|
+ bool is_last = &chunk == &chunks->back();
|
|
|
+ if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
|
+ // TODO @ngxson : may need to split into smaller batches
|
|
|
+ text_batch.n_tokens = chunk.tokens_text.size();
|
|
|
+ for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
|
|
|
+ text_batch.token [i] = chunk.tokens_text[i];
|
|
|
+ text_batch.pos [i] = n_past++;
|
|
|
+ text_batch.n_seq_id[i] = 1;
|
|
|
+ text_batch.seq_id [i][0] = seq_id;
|
|
|
+ text_batch.logits [i] = false;
|
|
|
+ }
|
|
|
+ if (is_last) {
|
|
|
+ // always get logits for last input chunk
|
|
|
+ text_batch.logits[text_batch.n_tokens - 1] = true;
|
|
|
+ }
|
|
|
+ ret = llama_decode(lctx, text_batch);
|
|
|
+ if (ret != 0) {
|
|
|
+ LOG_ERR("failed to decode text\n");
|
|
|
+ llama_batch_free(text_batch);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
|
+ GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
|
|
|
+ GGML_ASSERT(chunk.tokens_image != nullptr);
|
|
|
+ int64_t t0 = ggml_time_ms();
|
|
|
+ if (ctx->print_timings) {
|
|
|
+ LOG_INF("encoding image...\n");
|
|
|
+ }
|
|
|
+ ret = mtmd_encode(ctx, chunk.tokens_image);
|
|
|
+ if (ret != 0) {
|
|
|
+ LOG_ERR("failed to encode image\n");
|
|
|
+ llama_batch_free(text_batch);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ if (ctx->print_timings) {
|
|
|
+ LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
|
|
|
+ }
|
|
|
+
|
|
|
+ int32_t n_tokens = chunk.tokens_image->n_tokens();
|
|
|
+ float * embd = mtmd_get_output_embd(ctx);
|
|
|
+ decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
|
|
|
+ int64_t t1 = ggml_time_ms();
|
|
|
+ ret = llama_decode(lctx, batch_img.batch);
|
|
|
+ if (ret != 0) {
|
|
|
+ LOG_ERR("failed to decode image\n");
|
|
|
+ llama_batch_free(text_batch);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ if (ctx->print_timings) {
|
|
|
+ LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
|
|
|
+ }
|
|
|
+
|
|
|
+ n_past += n_tokens;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ GGML_ASSERT(false && "chunk type not supported");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_batch_free(text_batch);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
|
|
|
+ clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
|
+ bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
|
|
|
+ if (!ok) {
|
|
|
+ LOG_ERR("Unable to load image from buffer\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
|
|
|
+ output.data.resize(output.nx * output.ny * 3);
|
|
|
+ std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
|
|
|
+ clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
|
+ bool ok = clip_image_load_from_file(fname, img_u8.get());
|
|
|
+ if (!ok) {
|
|
|
+ LOG_ERR("Unable to load image %s\n", fname);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
|
|
|
+ output.data.resize(output.nx * output.ny * 3);
|
|
|
+ std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
|
|
|
+ return 0;
|
|
|
+}
|