|
|
@@ -36,6 +36,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_80M: return "80M";
|
|
|
case LLM_TYPE_109M: return "109M";
|
|
|
case LLM_TYPE_137M: return "137M";
|
|
|
+ case LLM_TYPE_140M: return "140M";
|
|
|
case LLM_TYPE_160M: return "160M";
|
|
|
case LLM_TYPE_190M: return "190M";
|
|
|
case LLM_TYPE_220M: return "220M";
|
|
|
@@ -44,6 +45,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_270M: return "270M";
|
|
|
case LLM_TYPE_335M: return "335M";
|
|
|
case LLM_TYPE_350M: return "350M";
|
|
|
+ case LLM_TYPE_360M: return "360M";
|
|
|
case LLM_TYPE_410M: return "410M";
|
|
|
case LLM_TYPE_450M: return "450M";
|
|
|
case LLM_TYPE_475M: return "475M";
|
|
|
@@ -51,6 +53,7 @@ const char * llm_type_name(llm_type type) {
|
|
|
case LLM_TYPE_700M: return "700M";
|
|
|
case LLM_TYPE_770M: return "770M";
|
|
|
case LLM_TYPE_780M: return "780M";
|
|
|
+ case LLM_TYPE_950M: return "950M";
|
|
|
case LLM_TYPE_0_3B: return "0.3B";
|
|
|
case LLM_TYPE_0_5B: return "0.5B";
|
|
|
case LLM_TYPE_0_6B: return "0.6B";
|
|
|
@@ -622,19 +625,32 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
|
ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
|
|
|
|
|
|
- hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
|
|
|
- hparams.n_swa = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
|
|
|
- hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
|
|
|
+ const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
|
|
+ if (found_swa && hparams.n_swa == 0) {
|
|
|
+ hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
|
|
+ hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
|
|
|
+ } else {
|
|
|
+ hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
|
|
|
+ hparams.n_swa = 8192;
|
|
|
+ hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
|
|
|
+ }
|
|
|
|
|
|
switch (hparams.n_expert) {
|
|
|
+ case 0: {
|
|
|
+ // MobileLLM (no MoE)
|
|
|
+ switch (hparams.n_embd) {
|
|
|
+ case 2048: type = LLM_TYPE_140M; break;
|
|
|
+ case 4096: type = LLM_TYPE_360M; break;
|
|
|
+ case 6144: type = LLM_TYPE_950M; break;
|
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case 16: type = LLM_TYPE_17B_16E; break;
|
|
|
case 128: type = LLM_TYPE_17B_128E; break;
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
|
|
|
- if (type == LLM_TYPE_17B_128E) {
|
|
|
- hparams.use_kq_norm = false;
|
|
|
- }
|
|
|
+ hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
|
|
|
} break;
|
|
|
case LLM_ARCH_ARCEE:
|
|
|
{
|
|
|
@@ -2454,9 +2470,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
|
|
}
|
|
|
|
|
|
- GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
|
|
|
for (int i = 0; i < n_layer; ++i) {
|
|
|
- bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
|
|
|
+ bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
|
|
|
|
|
|
auto & layer = layers[i];
|
|
|
|
|
|
@@ -6328,6 +6343,14 @@ struct llm_build_llama : public llm_graph_context {
|
|
|
cb(Kcur, "Kcur", il);
|
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
|
|
+ if (hparams.use_kq_norm) {
|
|
|
+ // Llama4TextL2Norm
|
|
|
+ Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
|
|
|
+ Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
|
|
|
+ cb(Qcur, "Qcur_normed", il);
|
|
|
+ cb(Kcur, "Kcur_normed", il);
|
|
|
+ }
|
|
|
+
|
|
|
cur = build_attn(inp_attn,
|
|
|
model.layers[il].wo, model.layers[il].bo,
|
|
|
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
|
|
@@ -6435,7 +6458,8 @@ struct llm_build_llama_iswa : public llm_graph_context {
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
|
ggml_tensor * inpSA = inpL;
|
|
|
|
|
|
- const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
|
|
|
+ const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
|
|
+ (il + 1) % hparams.n_no_rope_layer_step != 0;
|
|
|
|
|
|
// norm
|
|
|
cur = build_norm(inpL,
|
|
|
@@ -18981,7 +19005,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|
|
} break;
|
|
|
case LLM_ARCH_LLAMA4:
|
|
|
{
|
|
|
- llm = std::make_unique<llm_build_llama_iswa>(*this, params);
|
|
|
+ if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
|
|
|
+ llm = std::make_unique<llm_build_llama>(*this, params);
|
|
|
+ } else {
|
|
|
+ llm = std::make_unique<llm_build_llama_iswa>(*this, params);
|
|
|
+ }
|
|
|
} break;
|
|
|
case LLM_ARCH_DECI:
|
|
|
{
|