|
|
@@ -2,7 +2,9 @@
|
|
|
#include "common.h"
|
|
|
#include "log.h"
|
|
|
#include "llama.h"
|
|
|
+#include "gguf.h"
|
|
|
|
|
|
+#include <algorithm>
|
|
|
#include <chrono>
|
|
|
#include <cmath>
|
|
|
#include <cstdio>
|
|
|
@@ -13,7 +15,7 @@
|
|
|
#include <vector>
|
|
|
#include <fstream>
|
|
|
#include <unordered_map>
|
|
|
-#include <algorithm>
|
|
|
+#include <map>
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
|
@@ -22,17 +24,20 @@
|
|
|
static void print_usage(int, char ** argv) {
|
|
|
LOG("\nexample usage:\n");
|
|
|
LOG("\n %s \\\n"
|
|
|
- " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
|
|
|
+ " -m model.gguf -f some-text.txt [-o imatrix.gguf] [--process-output] \\\n"
|
|
|
" [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
|
|
|
- " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...] \\\n"
|
|
|
+ " [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] \\\n"
|
|
|
" [--parse-special]\n" , argv[0]);
|
|
|
LOG("\n");
|
|
|
}
|
|
|
|
|
|
+static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets";
|
|
|
+static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
|
|
|
+static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size";
|
|
|
+
|
|
|
struct Stats {
|
|
|
- std::vector<float> values;
|
|
|
- std::vector<int> counts;
|
|
|
- int ncall = 0;
|
|
|
+ std::vector<float> values;
|
|
|
+ std::vector<int64_t> counts;
|
|
|
};
|
|
|
|
|
|
class IMatrixCollector {
|
|
|
@@ -40,13 +45,16 @@ public:
|
|
|
IMatrixCollector() = default;
|
|
|
void set_params(common_params params) { m_params = std::move(params); }
|
|
|
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
|
|
- void save_imatrix(int ncall = -1) const;
|
|
|
- bool load_imatrix(const char * fname);
|
|
|
+ void save_imatrix_legacy(int32_t ncall = -1) const;
|
|
|
+ void save_imatrix(int32_t n_chunk = -1) const;
|
|
|
+ bool load_imatrix_legacy(const char * fname);
|
|
|
+ bool load_imatrix(const char * file_name);
|
|
|
private:
|
|
|
std::unordered_map<std::string, Stats> m_stats;
|
|
|
common_params m_params;
|
|
|
std::mutex m_mutex;
|
|
|
- int m_last_call = 0;
|
|
|
+ std::vector<std::string> m_datasets;
|
|
|
+ int32_t m_last_chunk = 0;
|
|
|
std::vector<char> m_src1_data;
|
|
|
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
|
|
|
};
|
|
|
@@ -77,6 +85,8 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
const struct ggml_tensor * src1 = t->src[1];
|
|
|
std::string wname = filter_tensor_name(src0->name);
|
|
|
|
|
|
+ const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
|
|
|
+
|
|
|
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
|
|
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
|
|
if (ask) {
|
|
|
@@ -102,14 +112,21 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
|
|
|
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
|
|
|
|
|
|
+ // TODO: 4d? (is that even used in practice?)
|
|
|
+ // the extra dimension would need to be stored somewhere to be reflected in the imatrix file
|
|
|
+ if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
|
|
|
+ LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
|
|
|
+ GGML_ASSERT(false);
|
|
|
+ }
|
|
|
+
|
|
|
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
|
|
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
|
|
|
if (t->op == GGML_OP_MUL_MAT_ID) {
|
|
|
// ids -> [n_experts_used, n_tokens]
|
|
|
// src1 -> [cols, n_expert_used, n_tokens]
|
|
|
const ggml_tensor * ids = t->src[2];
|
|
|
- const int n_as = src0->ne[2];
|
|
|
- const int n_ids = ids->ne[0];
|
|
|
+ const int64_t n_as = src0->ne[2];
|
|
|
+ const int64_t n_ids = ids->ne[0];
|
|
|
|
|
|
// the top-k selected expert ids are stored in the ids tensor
|
|
|
// for simplicity, always copy ids to host, because it is small
|
|
|
@@ -122,23 +139,29 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
|
|
|
auto & e = m_stats[wname];
|
|
|
|
|
|
- ++e.ncall;
|
|
|
-
|
|
|
+ if (e.counts.size() == 1 && n_as > 1) {
|
|
|
+ // broadcast, when loading an old imatrix
|
|
|
+ e.counts.resize(n_as, e.counts[0]);
|
|
|
+ }
|
|
|
if (e.values.empty()) {
|
|
|
e.values.resize(src1->ne[0]*n_as, 0);
|
|
|
- e.counts.resize(src1->ne[0]*n_as, 0);
|
|
|
+ e.counts.resize(n_as, 0);
|
|
|
}
|
|
|
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
|
|
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
|
|
+ LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as));
|
|
|
+ exit(1); //GGML_ABORT("fatal error");
|
|
|
+ }
|
|
|
+ else if (e.counts.size() != (size_t)n_as) {
|
|
|
+ LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as);
|
|
|
exit(1); //GGML_ABORT("fatal error");
|
|
|
}
|
|
|
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
|
|
+ LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
|
|
// loop over all possible experts, regardless if they are used or not in the batch
|
|
|
- for (int ex = 0; ex < n_as; ++ex) {
|
|
|
+ for (int64_t ex = 0; ex < n_as; ++ex) {
|
|
|
size_t e_start = ex*src1->ne[0];
|
|
|
|
|
|
- for (int idx = 0; idx < n_ids; ++idx) {
|
|
|
- for (int row = 0; row < (int)src1->ne[2]; ++row) {
|
|
|
+ for (int64_t idx = 0; idx < n_ids; ++idx) {
|
|
|
+ for (int64_t row = 0; row < src1->ne[2]; ++row) {
|
|
|
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
|
|
|
|
|
|
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
|
|
|
@@ -149,57 +172,73 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
const int64_t i12 = row;
|
|
|
const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]);
|
|
|
|
|
|
- for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
|
- e.values[e_start + j] += x[j]*x[j];
|
|
|
- e.counts[e_start + j]++;
|
|
|
- if (!std::isfinite(e.values[e_start + j])) {
|
|
|
- LOG("\n");
|
|
|
- LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
|
|
|
+ e.counts[ex]++;
|
|
|
+
|
|
|
+ for (int64_t j = 0; j < src1->ne[0]; ++j) {
|
|
|
+ e.values[e_start + j] += x[j] * x[j];
|
|
|
+ if (!std::isfinite((float)e.values[e_start + j])) {
|
|
|
+ LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
|
|
|
exit(1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
- if (e.ncall > m_last_call) {
|
|
|
- m_last_call = e.ncall;
|
|
|
- if (m_last_call % m_params.n_out_freq == 0) {
|
|
|
+ const int32_t n_chunk = e.counts[ex] / chunk_size;
|
|
|
+ if (n_chunk > m_last_chunk) {
|
|
|
+ const int32_t chunk_step = n_chunk - m_last_chunk;
|
|
|
+ m_last_chunk = n_chunk;
|
|
|
+ if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
|
|
|
save_imatrix();
|
|
|
}
|
|
|
- if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
|
|
|
- save_imatrix(m_last_call);
|
|
|
+ if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
|
|
|
+ save_imatrix(m_last_chunk);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
} else {
|
|
|
auto & e = m_stats[wname];
|
|
|
+ const int64_t n_mat = src1->ne[2] * src1->ne[3];
|
|
|
+
|
|
|
if (e.values.empty()) {
|
|
|
- e.values.resize(src1->ne[0], 0);
|
|
|
- e.counts.resize(src1->ne[0], 0);
|
|
|
+ e.values.resize(src1->ne[0] * n_mat, 0);
|
|
|
+ e.counts.resize(n_mat, 0);
|
|
|
}
|
|
|
- else if (e.values.size() != (size_t)src1->ne[0]) {
|
|
|
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
|
|
+ else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
|
|
|
+ LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
|
|
|
exit(1); //GGML_ABORT("fatal error");
|
|
|
}
|
|
|
- ++e.ncall;
|
|
|
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
|
|
- for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
|
|
- const float * x = (const float *) (data + row * src1->nb[1]);
|
|
|
- for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
|
|
- e.values[j] += x[j]*x[j];
|
|
|
- e.counts[j]++;
|
|
|
- if (!std::isfinite(e.values[j])) {
|
|
|
- LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
|
|
|
- exit(1);
|
|
|
- }
|
|
|
- }
|
|
|
+ else if (e.counts.size() != (size_t)n_mat) {
|
|
|
+ LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_mat);
|
|
|
+ exit(1); //GGML_ABORT("fatal error");
|
|
|
}
|
|
|
- if (e.ncall > m_last_call) {
|
|
|
- m_last_call = e.ncall;
|
|
|
- if (m_last_call % m_params.n_out_freq == 0) {
|
|
|
- save_imatrix();
|
|
|
- }
|
|
|
- if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
|
|
|
- save_imatrix(m_last_call);
|
|
|
+ LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
|
|
|
+ for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
|
|
|
+ for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
|
|
|
+ const int64_t mat_id = i3 * src1->ne[2] + i2;
|
|
|
+ const int64_t mat_start = mat_id * src1->ne[0];
|
|
|
+
|
|
|
+ for (int64_t row = 0; row < src1->ne[1]; ++row) {
|
|
|
+ const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->ne[3]);
|
|
|
+ e.counts[mat_id]++;
|
|
|
+ for (int64_t j = 0; j < src1->ne[0]; ++j) {
|
|
|
+ e.values[mat_start + j] += x[j] * x[j];
|
|
|
+ if (!std::isfinite((float)e.values[j])) {
|
|
|
+ LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str());
|
|
|
+ exit(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ const int32_t n_chunk = e.counts[mat_id] / chunk_size;
|
|
|
+ if (n_chunk > m_last_chunk) {
|
|
|
+ const int32_t chunk_step = n_chunk - m_last_chunk;
|
|
|
+ m_last_chunk = n_chunk;
|
|
|
+ if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
|
|
|
+ save_imatrix();
|
|
|
+ }
|
|
|
+ if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
|
|
|
+ save_imatrix(m_last_chunk);
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
@@ -207,7 +246,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-void IMatrixCollector::save_imatrix(int ncall) const {
|
|
|
+void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const {
|
|
|
auto fname = m_params.out_file;
|
|
|
|
|
|
if (ncall > 0) {
|
|
|
@@ -215,7 +254,7 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
|
|
fname += std::to_string(ncall);
|
|
|
}
|
|
|
|
|
|
- // avoid writing imatrix entries that do not have full data
|
|
|
+ // warn when writing imatrix entries that do not have full data
|
|
|
// this can happen with MoE models where some of the experts end up not being exercised by the provided training data
|
|
|
|
|
|
int n_entries = 0;
|
|
|
@@ -247,8 +286,7 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
|
|
}
|
|
|
|
|
|
if (n_zeros > 0) {
|
|
|
- LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
|
|
|
- continue;
|
|
|
+ LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
|
|
|
}
|
|
|
|
|
|
n_entries++;
|
|
|
@@ -259,93 +297,378 @@ void IMatrixCollector::save_imatrix(int ncall) const {
|
|
|
LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
|
|
|
}
|
|
|
|
|
|
+ // deterministic tensor name order
|
|
|
+ std::sort(to_store.begin(), to_store.end());
|
|
|
+
|
|
|
+ const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
|
|
|
+
|
|
|
std::ofstream out(fname, std::ios::binary);
|
|
|
out.write((const char *) &n_entries, sizeof(n_entries));
|
|
|
for (const auto & name : to_store) {
|
|
|
const auto & stat = m_stats.at(name);
|
|
|
- int len = name.size();
|
|
|
+ const int32_t len = name.size();
|
|
|
out.write((const char *) &len, sizeof(len));
|
|
|
out.write(name.c_str(), len);
|
|
|
- out.write((const char *) &stat.ncall, sizeof(stat.ncall));
|
|
|
- int nval = stat.values.size();
|
|
|
+ // ceiling division to avoid accidental zeros
|
|
|
+ const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size;
|
|
|
+ out.write((const char *) &ncall, sizeof(ncall));
|
|
|
+ const int32_t nval = stat.values.size();
|
|
|
+ const int32_t nmat = stat.counts.size();
|
|
|
out.write((const char *) &nval, sizeof(nval));
|
|
|
- if (nval > 0) {
|
|
|
+ if (nval > 0 && nmat > 0) {
|
|
|
std::vector<float> tmp(nval);
|
|
|
- for (int i = 0; i < nval; i++) {
|
|
|
- tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
|
|
|
+ for (int32_t i = 0; i < nval; i++) {
|
|
|
+ float count = static_cast<float>(stat.counts[i / (nval / nmat)]);
|
|
|
+ float value = stat.values[i];
|
|
|
+ if (count == 0.0f) {
|
|
|
+ // store 1 for partial data
|
|
|
+ value = 1.0f;
|
|
|
+ count = 1.0f;
|
|
|
+ }
|
|
|
+ tmp[i] = (value / count) * static_cast<float>(ncall);
|
|
|
}
|
|
|
- out.write((const char*)tmp.data(), nval*sizeof(float));
|
|
|
+ out.write((const char *) tmp.data(), nval * sizeof(float));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Write the number of call the matrix was computed with
|
|
|
- out.write((const char *) &m_last_call, sizeof(m_last_call));
|
|
|
+ out.write((const char *) &m_last_chunk, sizeof(m_last_chunk));
|
|
|
|
|
|
// Write the input filename at the end of the file to later on specify it in quantize
|
|
|
{
|
|
|
- int len = m_params.prompt_file.size();
|
|
|
+ const char * dataset_file = m_params.prompt_file.c_str();
|
|
|
+ int32_t len = m_params.prompt_file.size();
|
|
|
+ // When there is no prompt but there were other imatrix files loaded, use the last dataset
|
|
|
+ if (m_params.prompt_file.empty() && !m_datasets.empty()) {
|
|
|
+ const std::string & dataset_str = m_datasets[m_datasets.size() - 1];
|
|
|
+ dataset_file = dataset_str.c_str();
|
|
|
+ len = dataset_str.size();
|
|
|
+ }
|
|
|
out.write((const char *) &len, sizeof(len));
|
|
|
- out.write(m_params.prompt_file.c_str(), len);
|
|
|
+ out.write(dataset_file, len);
|
|
|
+ }
|
|
|
+
|
|
|
+ LOGV(1, "\n");
|
|
|
+ LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
|
|
|
+}
|
|
|
+
|
|
|
+void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
|
|
+ auto fname = m_params.out_file;
|
|
|
+
|
|
|
+ // TODO: use the new format in more cases
|
|
|
+ if (!string_ends_with(fname, ".gguf")) {
|
|
|
+ LOG_WRN("\n%s: saving to legacy imatrix format because output suffix is not .gguf\n", __func__);
|
|
|
+ this->save_imatrix_legacy(n_chunk);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (n_chunk > 0) {
|
|
|
+ fname += ".at_";
|
|
|
+ fname += std::to_string(n_chunk);
|
|
|
+ }
|
|
|
+
|
|
|
+ // write imatrix entries even if they don't have full data. (can be corrected when reading)
|
|
|
+ // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
|
|
|
+
|
|
|
+ std::vector<std::string> to_store;
|
|
|
+ size_t data_size = 0;
|
|
|
+
|
|
|
+ bool is_first = true; // for printing
|
|
|
+ for (const auto & kv : m_stats) {
|
|
|
+ const int n_all = kv.second.counts.size();
|
|
|
+
|
|
|
+ int n_zeros = 0;
|
|
|
+ for (const auto c : kv.second.counts) {
|
|
|
+ if (c == 0) {
|
|
|
+ n_zeros++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (n_zeros != 0 && is_first) {
|
|
|
+ LOG_INF("\n");
|
|
|
+ is_first = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (n_zeros > 0) {
|
|
|
+ LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
|
|
|
+ }
|
|
|
+
|
|
|
+ to_store.push_back(kv.first);
|
|
|
+ data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
|
|
|
+ data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
|
|
|
}
|
|
|
|
|
|
+ // deterministic tensor name order
|
|
|
+ std::sort(to_store.begin(), to_store.end());
|
|
|
+
|
|
|
+ struct ggml_init_params params = {
|
|
|
+ /* .mem_size = */ data_size,
|
|
|
+ /* .mem_buffer = */ NULL,
|
|
|
+ /* .no_alloc = */ false,
|
|
|
+ };
|
|
|
+ struct ggml_context * ctx = ggml_init(params);
|
|
|
+ struct gguf_context * ctx_gguf = gguf_init_empty();
|
|
|
+
|
|
|
+ {
|
|
|
+ std::vector<const char *> datasets;
|
|
|
+ datasets.reserve(m_datasets.size() + 1);
|
|
|
+ for (size_t i = 0; i < m_datasets.size(); ++i) {
|
|
|
+ datasets.push_back(m_datasets[i].c_str());
|
|
|
+ }
|
|
|
+ if (!m_params.prompt_file.empty()) {
|
|
|
+ datasets.push_back(m_params.prompt_file.c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ gguf_set_val_str(ctx_gguf, "general.type", "imatrix");
|
|
|
+ // Write the dataset paths
|
|
|
+ gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size());
|
|
|
+ // Write the number of chunks the matrix was computed with
|
|
|
+ gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk);
|
|
|
+ gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (const auto & name : to_store) {
|
|
|
+ const auto & stat = m_stats.at(name);
|
|
|
+ const int32_t nval = (int32_t) stat.values.size();
|
|
|
+ const int32_t nmat = (int32_t) stat.counts.size();
|
|
|
+ if (nval > 0 && nmat > 0) {
|
|
|
+ struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat);
|
|
|
+ struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat);
|
|
|
+ ggml_format_name(in_sum2, "%s.in_sum2", name.c_str());
|
|
|
+ ggml_format_name(counts, "%s.counts", name.c_str());
|
|
|
+
|
|
|
+ for (int32_t j = 0; j < nval; ++j) {
|
|
|
+ ((float *) in_sum2->data)[j] = (float) stat.values[j];
|
|
|
+ }
|
|
|
+ for (int32_t j = 0; j < nmat; ++j) {
|
|
|
+ ((float *) counts->data)[j] = (float) stat.counts[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ gguf_add_tensor(ctx_gguf, in_sum2);
|
|
|
+ gguf_add_tensor(ctx_gguf, counts);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ gguf_write_to_file(ctx_gguf, fname.c_str(), false);
|
|
|
+
|
|
|
LOGV(1, "\n");
|
|
|
- LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
|
|
|
+ LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
|
|
|
+
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
}
|
|
|
|
|
|
-bool IMatrixCollector::load_imatrix(const char * fname) {
|
|
|
+bool IMatrixCollector::load_imatrix_legacy(const char * fname) {
|
|
|
std::ifstream in(fname, std::ios::binary);
|
|
|
if (!in) {
|
|
|
- LOG_ERR("%s: failed to open %s\n",__func__, fname);
|
|
|
+ LOG_ERR("%s: failed to open %s\n", __func__, fname);
|
|
|
return false;
|
|
|
}
|
|
|
int n_entries;
|
|
|
- in.read((char*)&n_entries, sizeof(n_entries));
|
|
|
+ in.read((char *) &n_entries, sizeof(n_entries));
|
|
|
if (in.fail() || n_entries < 1) {
|
|
|
LOG_ERR("%s: no data in file %s\n", __func__, fname);
|
|
|
return false;
|
|
|
}
|
|
|
+ // Guess the chunk size because it's not stored in the file
|
|
|
+ const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
|
|
|
+
|
|
|
for (int i = 0; i < n_entries; ++i) {
|
|
|
- int len; in.read((char *)&len, sizeof(len));
|
|
|
- std::vector<char> name_as_vec(len+1);
|
|
|
- in.read((char *)name_as_vec.data(), len);
|
|
|
+ int32_t len = 0;
|
|
|
+ in.read((char *) &len, sizeof(len));
|
|
|
+ std::vector<char> name_as_vec(len + 1);
|
|
|
+ in.read((char *) name_as_vec.data(), len);
|
|
|
if (in.fail()) {
|
|
|
- LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
|
|
|
+ LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname);
|
|
|
return false;
|
|
|
}
|
|
|
name_as_vec[len] = 0;
|
|
|
- std::string name{name_as_vec.data()};
|
|
|
+ std::string name{ name_as_vec.data() };
|
|
|
auto & e = m_stats[std::move(name)];
|
|
|
- int ncall;
|
|
|
- in.read((char*)&ncall, sizeof(ncall));
|
|
|
- int nval;
|
|
|
- in.read((char *)&nval, sizeof(nval));
|
|
|
+ int32_t ncall = 0;
|
|
|
+ in.read((char *) &ncall, sizeof(ncall));
|
|
|
+ int32_t nval = 0;
|
|
|
+ in.read((char *) &nval, sizeof(nval));
|
|
|
if (in.fail() || nval < 1) {
|
|
|
- LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
|
|
|
+ LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i);
|
|
|
m_stats = {};
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
if (e.values.empty()) {
|
|
|
- e.values.resize(nval, 0);
|
|
|
- e.counts.resize(nval, 0);
|
|
|
+ e.values.resize(nval, 0.0f);
|
|
|
+ e.counts.resize(1, 0);
|
|
|
}
|
|
|
|
|
|
std::vector<float> tmp(nval);
|
|
|
- in.read((char*)tmp.data(), nval*sizeof(float));
|
|
|
+ in.read((char *) tmp.data(), nval * sizeof(float));
|
|
|
if (in.fail()) {
|
|
|
- LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
|
|
|
+ LOG_ERR("%s: failed reading data for entry %d\n", __func__, i);
|
|
|
m_stats = {};
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
|
|
|
+ // Recreate the state as expected by save_imatrix(), and correct for weighted sum.
|
|
|
for (int i = 0; i < nval; i++) {
|
|
|
- e.values[i] += tmp[i];
|
|
|
- e.counts[i] += ncall;
|
|
|
+ e.values[i] += tmp[i] * chunk_size;
|
|
|
+ }
|
|
|
+ // The legacy format doesn't distinguish the counts for different experts
|
|
|
+ for (size_t j = 0; j < e.counts.size(); ++j) {
|
|
|
+ e.counts[j] += ncall * chunk_size;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ // TODO: extract into its own method; this is also used by the GGUF-based format
|
|
|
+ // Calculate the last chunk count
|
|
|
+ int64_t max_count = 0;
|
|
|
+ for (const auto & stats : m_stats) {
|
|
|
+ for (int64_t count : stats.second.counts) {
|
|
|
+ if (count > max_count) {
|
|
|
+ max_count = count;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ m_last_chunk = max_count / (chunk_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ // Read the number of calls the matrix was computed with
|
|
|
+ int32_t n_calls;
|
|
|
+ in.read((char *) &n_calls, sizeof(n_calls));
|
|
|
+ // ignore it because it's not important
|
|
|
+ }
|
|
|
+
|
|
|
+ // Read the dataset path to include it when writing to GGUF
|
|
|
+ if (!in.fail()){
|
|
|
+ int32_t len = 0;
|
|
|
+ in.read((char *) &len, sizeof(len));
|
|
|
+ if (!in.fail()) {
|
|
|
+ std::vector<char> dataset;
|
|
|
+ dataset.resize(len + 1, 0);
|
|
|
+ in.read(dataset.data(), len);
|
|
|
+ if (!in.fail()) {
|
|
|
+ m_datasets.push_back(dataset.data());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+// Using GGUF as the file format, for greater extensibility
|
|
|
+bool IMatrixCollector::load_imatrix(const char * file_name) {
|
|
|
+ struct ggml_context * ctx = nullptr;
|
|
|
+ struct gguf_init_params meta_gguf_params = {
|
|
|
+ /* .no_alloc = */ false, // the data is needed
|
|
|
+ /* .ctx = */ &ctx,
|
|
|
+ };
|
|
|
+ struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params);
|
|
|
+ if (!ctx_gguf) {
|
|
|
+ return this->load_imatrix_legacy(file_name);
|
|
|
+ }
|
|
|
+ const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
|
|
|
+ if (n_entries < 1) {
|
|
|
+ LOG_ERR("%s: no data in file %s\n", __func__, file_name);
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS);
|
|
|
+ if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) {
|
|
|
+ const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key);
|
|
|
+ m_datasets.reserve(m_datasets.size() + n);
|
|
|
+ for (int64_t i = 0; i < n; ++i) {
|
|
|
+ m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i));
|
|
|
}
|
|
|
- e.ncall += ncall;
|
|
|
+ }
|
|
|
+
|
|
|
+ const std::string in_sum2_suffix{ ".in_sum2" };
|
|
|
+ const std::string counts_suffix{ ".counts" };
|
|
|
+
|
|
|
+ // Could re-use m_stats instead, but this allows
|
|
|
+ // checking for completeness of *each* loaded imatrix file
|
|
|
+ // and also makes it easier to re-use a similar implementation in quantize.cpp
|
|
|
+ // Using an ordered map to get a deterministic iteration order.
|
|
|
+ std::map<std::string, std::pair<struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
|
|
|
+
|
|
|
+ for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
|
|
+ std::string name = cur->name;
|
|
|
|
|
|
+ if (name.empty()) { continue; }
|
|
|
+
|
|
|
+ if (string_remove_suffix(name, in_sum2_suffix)) {
|
|
|
+ // in_sum2
|
|
|
+ sums_counts_for[std::move(name)].first = cur;
|
|
|
+ } else if (string_remove_suffix(name, counts_suffix)) {
|
|
|
+ // counts
|
|
|
+ sums_counts_for[std::move(name)].second = cur;
|
|
|
+ } else {
|
|
|
+ // ignore other tensors
|
|
|
+ }
|
|
|
}
|
|
|
+
|
|
|
+ for (const auto & sc : sums_counts_for) {
|
|
|
+ const std::string & name = sc.first;
|
|
|
+ const struct ggml_tensor * in_sum2 = sc.second.first;
|
|
|
+ const struct ggml_tensor * counts = sc.second.second;
|
|
|
+
|
|
|
+ if (!in_sum2 || !counts) {
|
|
|
+ LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str());
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ auto & e = m_stats[name];
|
|
|
+
|
|
|
+ int64_t nval = ggml_nelements(in_sum2);
|
|
|
+ if (e.values.empty()) {
|
|
|
+ e.values.resize(nval, 0.0f);
|
|
|
+ } else if ((size_t) nval != e.values.size()) {
|
|
|
+ LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size());
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ int64_t ncounts = ggml_nelements(counts);
|
|
|
+ if (e.counts.empty()) {
|
|
|
+ e.counts.resize(ncounts, 0);
|
|
|
+ } else if (e.counts.size() == 1 && ncounts > 1) {
|
|
|
+ // broadcast, when loading an old imatrix
|
|
|
+ e.counts.resize(ncounts, e.counts[0]);
|
|
|
+ } else if ((size_t) ncounts != e.counts.size()) {
|
|
|
+ LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size());
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Recreate the state as expected by save_imatrix()
|
|
|
+ for (int64_t j = 0; j < nval; j++) {
|
|
|
+ e.values[j] += ((const float *) in_sum2->data)[j];
|
|
|
+ }
|
|
|
+ for (int64_t j = 0; j < ncounts; j++) {
|
|
|
+ e.counts[j] += std::lround(((const float *) counts->data)[j]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: extract into its own method; this is also used by the legacy format
|
|
|
+ // Calculate the last chunk count
|
|
|
+ int64_t max_count = 0;
|
|
|
+ for (const auto & stats : m_stats) {
|
|
|
+ for (int64_t count : stats.second.counts) {
|
|
|
+ if (count > max_count) {
|
|
|
+ max_count = count;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel);
|
|
|
+
|
|
|
+ gguf_free(ctx_gguf);
|
|
|
+ ggml_free(ctx);
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
@@ -428,12 +751,11 @@ static void process_logits(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
|
|
+static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
|
|
|
const llama_model * model = llama_get_model(ctx);
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
|
|
|
|
const bool add_bos = llama_vocab_get_add_bos(vocab);
|
|
|
- const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
|
|
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
|
|
|
|
|
|
@@ -478,45 +800,61 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
|
|
double nll = 0.0;
|
|
|
double nll2 = 0.0;
|
|
|
|
|
|
- LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
|
|
+ const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
|
+ const int n_seq = std::max(1, n_batch / n_ctx);
|
|
|
|
|
|
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
+ GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
|
|
|
+ GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
|
|
|
|
|
|
- const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
|
+ llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
|
|
|
|
|
|
std::vector<float> logits;
|
|
|
if (params.compute_ppl && num_batches > 1) {
|
|
|
logits.reserve((size_t)n_ctx * n_vocab);
|
|
|
}
|
|
|
|
|
|
- for (int i = 0; i < n_chunk; ++i) {
|
|
|
+ LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
|
|
+
|
|
|
+ std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
+
|
|
|
+ for (int i = 0; i < n_chunk; i += n_seq) {
|
|
|
const int start = i * n_ctx;
|
|
|
const int end = start + n_ctx;
|
|
|
|
|
|
- std::vector<float> logits;
|
|
|
+ const int n_seq_batch = std::min(n_seq, n_chunk - i);
|
|
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
|
|
// clear the KV cache
|
|
|
llama_memory_clear(llama_get_memory(ctx), true);
|
|
|
|
|
|
- llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
|
|
-
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
|
const int batch_start = start + j * n_batch;
|
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
|
|
- // save original token and restore it after eval
|
|
|
- const auto token_org = tokens[batch_start];
|
|
|
+ // clear the batch
|
|
|
+ common_batch_clear(batch);
|
|
|
+
|
|
|
+ for (int seq = 0; seq < n_seq_batch; seq++) {
|
|
|
+ int seq_start = batch_start + seq*n_ctx;
|
|
|
|
|
|
- // add BOS token for the first batch of each chunk
|
|
|
- if (add_bos && j == 0) {
|
|
|
- tokens[batch_start] = llama_vocab_bos(vocab);
|
|
|
- }
|
|
|
+ // save original token and restore it after eval
|
|
|
+ const auto token_org = tokens[seq_start];
|
|
|
|
|
|
- common_batch_clear(batch);
|
|
|
- for (int i = 0; i < batch_size; i++) {
|
|
|
- common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
|
|
|
+ // add BOS token for the first batch of each chunk
|
|
|
+ if (add_bos && j == 0) {
|
|
|
+ tokens[seq_start] = llama_vocab_bos(vocab);
|
|
|
+ }
|
|
|
+ for (int k = 0; k < batch_size; ++k) {
|
|
|
+ // NOTE: specifying all logits to get activations for the output.weight tensor
|
|
|
+ // and also for the perplexity calculation.
|
|
|
+ // TODO: only get outputs when (params.process_output || params.compute_ppl)
|
|
|
+ // (not possible when this skips FFN computation of the last layer)
|
|
|
+ common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ // restore the original token in case it was set to BOS
|
|
|
+ tokens[seq_start] = token_org;
|
|
|
}
|
|
|
|
|
|
if (llama_decode(ctx, batch)) {
|
|
|
@@ -525,23 +863,19 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- // restore the original token in case it was set to BOS
|
|
|
- tokens[batch_start] = token_org;
|
|
|
-
|
|
|
if (params.compute_ppl && num_batches > 1) {
|
|
|
const auto * batch_logits = llama_get_logits(ctx);
|
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- llama_batch_free(batch);
|
|
|
-
|
|
|
- const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
|
|
if (i == 0) {
|
|
|
+ llama_synchronize(ctx);
|
|
|
+ const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
|
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
|
- int total_seconds = (int)(t_total * n_chunk);
|
|
|
+ int total_seconds = (int)(t_total * n_chunk / n_seq);
|
|
|
if (total_seconds >= 60*60) {
|
|
|
LOG("%d hours ", total_seconds / (60*60));
|
|
|
total_seconds = total_seconds % (60*60);
|
|
|
@@ -551,17 +885,27 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
|
|
|
|
|
if (params.compute_ppl) {
|
|
|
const int first = n_ctx/2;
|
|
|
- const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
|
|
- process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
|
|
- workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
|
|
- count += n_ctx - first - 1;
|
|
|
+ for (int seq = 0; seq < n_seq_batch; seq++) {
|
|
|
+ const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
|
|
|
+
|
|
|
+ llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
|
|
|
|
|
|
- LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
|
+ process_logits(n_vocab, all_logits + first*n_vocab,
|
|
|
+ tokens_data, n_ctx - 1 - first,
|
|
|
+ workers, nll, nll2,
|
|
|
+ logit_history.data() + start + seq*n_ctx + first,
|
|
|
+ prob_history.data() + start + seq*n_ctx + first);
|
|
|
+
|
|
|
+ count += n_ctx - first - 1;
|
|
|
+
|
|
|
+ LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
|
|
|
+ }
|
|
|
fflush(stdout);
|
|
|
|
|
|
logits.clear();
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
LOG("\n");
|
|
|
|
|
|
if (params.compute_ppl) {
|
|
|
@@ -577,13 +921,15 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ llama_batch_free(batch);
|
|
|
+
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
common_params params;
|
|
|
|
|
|
- params.out_file = "imatrix.dat" ;
|
|
|
+ params.out_file = "imatrix.gguf";
|
|
|
|
|
|
params.n_ctx = 512;
|
|
|
params.escape = false;
|
|
|
@@ -594,7 +940,22 @@ int main(int argc, char ** argv) {
|
|
|
|
|
|
common_init();
|
|
|
|
|
|
- params.n_batch = std::min(params.n_batch, params.n_ctx);
|
|
|
+ const int32_t n_ctx = params.n_ctx;
|
|
|
+
|
|
|
+ if (n_ctx <= 0) {
|
|
|
+ LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
|
|
|
+ const int32_t n_kv = n_seq * n_ctx;
|
|
|
+
|
|
|
+ params.n_parallel = n_seq;
|
|
|
+ params.n_ctx = n_kv;
|
|
|
+
|
|
|
+ params.n_batch = std::min(params.n_batch, n_kv);
|
|
|
+ }
|
|
|
|
|
|
g_collector.set_params(params);
|
|
|
|
|
|
@@ -606,9 +967,23 @@ int main(int argc, char ** argv) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- if (params.in_files.size() > 1) {
|
|
|
- LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
|
|
|
+ if (params.prompt.empty()) {
|
|
|
+ LOG_INF("No prompt provided; combining precomputed matrices only.\n");
|
|
|
+
|
|
|
+ if (params.in_files.empty()) {
|
|
|
+ LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (params.in_files.size() == 1) {
|
|
|
+ LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str());
|
|
|
+ } else if (params.in_files.size() > 1) {
|
|
|
+ LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
|
|
|
+ }
|
|
|
+
|
|
|
g_collector.save_imatrix();
|
|
|
+
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
llama_backend_init();
|
|
|
@@ -643,19 +1018,10 @@ int main(int argc, char ** argv) {
|
|
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
|
|
}
|
|
|
|
|
|
- if (params.prompt.empty()) {
|
|
|
- if (params.in_files.empty()) {
|
|
|
- LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
|
|
|
- return 1;
|
|
|
- }
|
|
|
- LOG_INF("No prompt provided; combining precomputed matrices only.\n");
|
|
|
- } else {
|
|
|
- if (!compute_imatrix(ctx, params)) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
+ if (!compute_imatrix(ctx, params, n_ctx)) {
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
g_collector.save_imatrix();
|
|
|
|
|
|
LOG("\n");
|