|
|
@@ -1,9 +1,8 @@
|
|
|
#!/usr/bin/env python3
|
|
|
+from __future__ import annotations
|
|
|
|
|
|
-import gguf
|
|
|
import argparse
|
|
|
import concurrent.futures
|
|
|
-from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
|
|
import copy
|
|
|
import enum
|
|
|
import faulthandler
|
|
|
@@ -20,21 +19,23 @@ import struct
|
|
|
import sys
|
|
|
import time
|
|
|
import zipfile
|
|
|
-import numpy as np
|
|
|
-
|
|
|
from abc import ABCMeta, abstractmethod
|
|
|
+from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
|
|
from dataclasses import dataclass
|
|
|
from pathlib import Path
|
|
|
-from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Type, TypeVar, Union)
|
|
|
-from sentencepiece import SentencePieceProcessor # type: ignore
|
|
|
+from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
|
|
|
+
|
|
|
+import gguf
|
|
|
+import numpy as np
|
|
|
+from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
- from typing_extensions import TypeAlias
|
|
|
+ from typing import TypeAlias
|
|
|
|
|
|
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
|
|
faulthandler.register(signal.SIGUSR1)
|
|
|
|
|
|
-NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
|
|
+NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
|
|
|
|
|
ARCH=gguf.MODEL_ARCH.LLAMA
|
|
|
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
|
|
|
@@ -47,8 +48,8 @@ DEFAULT_CONCURRENCY = 8
|
|
|
@dataclass(frozen=True)
|
|
|
class DataType:
|
|
|
name: str
|
|
|
- dtype: 'np.dtype[Any]'
|
|
|
- valid_conversions: List[str]
|
|
|
+ dtype: np.dtype[Any]
|
|
|
+ valid_conversions: list[str]
|
|
|
|
|
|
def elements_to_bytes(self, n_elements: int) -> int:
|
|
|
return n_elements * self.dtype.itemsize
|
|
|
@@ -65,7 +66,7 @@ DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_convers
|
|
|
@dataclass(frozen=True)
|
|
|
class QuantizedDataType(DataType):
|
|
|
block_size: int
|
|
|
- quantized_dtype: 'np.dtype[Any]'
|
|
|
+ quantized_dtype: np.dtype[Any]
|
|
|
ggml_type: gguf.GGMLQuantizationType
|
|
|
|
|
|
def quantize(self, arr: NDArray) -> NDArray:
|
|
|
@@ -84,7 +85,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
|
|
|
n_blocks = arr.size // self.block_size
|
|
|
blocks = arr.reshape((n_blocks, self.block_size))
|
|
|
# Much faster implementation of block quantization contributed by @Cebtenzzre
|
|
|
- def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[Tuple[Any, Any]]:
|
|
|
+ def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
|
|
|
d = abs(blocks).max(axis = 1) / np.float32(127)
|
|
|
with np.errstate(divide = 'ignore'):
|
|
|
qs = (blocks / d[:, None]).round()
|
|
|
@@ -98,13 +99,13 @@ DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
|
|
|
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
|
|
|
|
|
|
# Quantized types skipped here because they may also map to np.float32
|
|
|
-NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = {}
|
|
|
+NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
|
|
|
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
|
|
|
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
|
|
|
raise ValueError(f'Invalid duplicate data type {dt}')
|
|
|
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
|
|
|
|
|
|
-SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
|
|
|
+SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
|
|
|
'BF16': DT_BF16,
|
|
|
'F16': DT_F16,
|
|
|
'F32': DT_F32,
|
|
|
@@ -119,14 +120,14 @@ class GGMLFileType(enum.IntEnum):
|
|
|
MostlyF16 = 1 # except 1d tensors
|
|
|
MostlyQ8_0 = 7 # except 1d tensors
|
|
|
|
|
|
- def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
|
|
|
+ def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
|
|
|
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
|
|
|
if dt is None:
|
|
|
raise ValueError(self)
|
|
|
# 1D tensors are always F32.
|
|
|
return dt if len(tensor.shape) > 1 else DT_F32
|
|
|
|
|
|
-GGML_FILE_TYPE_TO_DATA_TYPE: Dict[GGMLFileType, DataType] = {
|
|
|
+GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
|
|
GGMLFileType.AllF32 : DT_F32,
|
|
|
GGMLFileType.MostlyF16 : DT_F16,
|
|
|
GGMLFileType.MostlyQ8_0: DT_Q8_0,
|
|
|
@@ -148,13 +149,13 @@ class Params:
|
|
|
n_head_kv: int
|
|
|
f_norm_eps: float
|
|
|
|
|
|
- f_rope_freq_base: Optional[float] = None
|
|
|
- f_rope_scale: Optional[float] = None
|
|
|
+ f_rope_freq_base: float | None = None
|
|
|
+ f_rope_scale: float | None = None
|
|
|
|
|
|
- ftype: Optional[GGMLFileType] = None
|
|
|
+ ftype: GGMLFileType | None = None
|
|
|
|
|
|
# path to the directory containing the model files
|
|
|
- path_model: Optional['Path'] = None
|
|
|
+ path_model: Path | None = None
|
|
|
|
|
|
@staticmethod
|
|
|
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
|
|
@@ -166,7 +167,7 @@ class Params:
|
|
|
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
|
|
|
|
|
@staticmethod
|
|
|
- def guessed(model: 'LazyModel') -> 'Params':
|
|
|
+ def guessed(model: LazyModel) -> Params:
|
|
|
# try transformer naming first
|
|
|
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
|
|
|
|
|
|
@@ -202,7 +203,7 @@ class Params:
|
|
|
)
|
|
|
|
|
|
@staticmethod
|
|
|
- def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
|
|
+ def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
|
|
|
config = json.load(open(config_path))
|
|
|
|
|
|
n_vocab = config["vocab_size"]
|
|
|
@@ -247,7 +248,7 @@ class Params:
|
|
|
# LLaMA v2 70B params.json
|
|
|
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
|
|
|
@staticmethod
|
|
|
- def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
|
|
+ def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
|
|
config = json.load(open(config_path))
|
|
|
|
|
|
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
|
|
@@ -291,7 +292,7 @@ class Params:
|
|
|
)
|
|
|
|
|
|
@staticmethod
|
|
|
- def load(model_plus: 'ModelPlus') -> 'Params':
|
|
|
+ def load(model_plus: ModelPlus) -> Params:
|
|
|
hf_config_path = model_plus.paths[0].parent / "config.json"
|
|
|
orig_config_path = model_plus.paths[0].parent / "params.json"
|
|
|
|
|
|
@@ -314,9 +315,9 @@ class Params:
|
|
|
#
|
|
|
|
|
|
class BpeVocab:
|
|
|
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
|
|
+ def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
|
|
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
|
|
- added_tokens: Dict[str, int]
|
|
|
+ added_tokens: dict[str, int]
|
|
|
if fname_added_tokens is not None:
|
|
|
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
|
|
else:
|
|
|
@@ -335,9 +336,9 @@ class BpeVocab:
|
|
|
self.fname_tokenizer = fname_tokenizer
|
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
|
|
- def bpe_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
tokenizer = self.bpe_tokenizer
|
|
|
- from transformers.models.gpt2 import tokenization_gpt2
|
|
|
+ from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
|
|
|
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
|
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
for i, item in enumerate(tokenizer):
|
|
|
@@ -345,12 +346,12 @@ class BpeVocab:
|
|
|
score: float = -i
|
|
|
yield text, score, gguf.TokenType.USER_DEFINED
|
|
|
|
|
|
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
for text in self.added_tokens_list:
|
|
|
score = -1000.0
|
|
|
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
|
|
|
|
|
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
yield from self.bpe_tokens()
|
|
|
yield from self.added_tokens()
|
|
|
|
|
|
@@ -359,9 +360,9 @@ class BpeVocab:
|
|
|
|
|
|
|
|
|
class SentencePieceVocab:
|
|
|
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
|
|
+ def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
|
|
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
|
|
- added_tokens: Dict[str, int]
|
|
|
+ added_tokens: dict[str, int]
|
|
|
if fname_added_tokens is not None:
|
|
|
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
|
|
else:
|
|
|
@@ -380,7 +381,7 @@ class SentencePieceVocab:
|
|
|
self.fname_tokenizer = fname_tokenizer
|
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
|
|
- def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
tokenizer = self.sentencepiece_tokenizer
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
|
piece = tokenizer.id_to_piece(i)
|
|
|
@@ -404,19 +405,19 @@ class SentencePieceVocab:
|
|
|
|
|
|
yield text, score, toktype
|
|
|
|
|
|
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
for text in self.added_tokens_list:
|
|
|
score = -1000.0
|
|
|
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
|
|
|
|
|
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
|
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
|
yield from self.sentencepiece_tokens()
|
|
|
yield from self.added_tokens()
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
|
|
|
|
-Vocab = Union[BpeVocab, SentencePieceVocab]
|
|
|
+Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
|
|
|
|
|
|
#
|
|
|
# data loading
|
|
|
@@ -436,15 +437,15 @@ class Tensor(metaclass=ABCMeta):
|
|
|
data_type: DataType
|
|
|
|
|
|
@abstractmethod
|
|
|
- def astype(self, data_type: DataType) -> 'Tensor': ...
|
|
|
+ def astype(self, data_type: DataType) -> Tensor: ...
|
|
|
@abstractmethod
|
|
|
- def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ...
|
|
|
+ def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
|
|
|
@abstractmethod
|
|
|
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': ...
|
|
|
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
|
|
|
@abstractmethod
|
|
|
- def part(self, n_part: int) -> 'UnquantizedTensor': ...
|
|
|
+ def part(self, n_part: int) -> UnquantizedTensor: ...
|
|
|
@abstractmethod
|
|
|
- def to_ggml(self) -> 'GGMLCompatibleTensor': ...
|
|
|
+ def to_ggml(self) -> GGMLCompatibleTensor: ...
|
|
|
|
|
|
|
|
|
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
|
|
|
@@ -465,22 +466,22 @@ class UnquantizedTensor(Tensor):
|
|
|
self.ndarray = bf16_to_fp32(self.ndarray)
|
|
|
return UnquantizedTensor(self.ndarray.astype(dtype))
|
|
|
|
|
|
- def to_ggml(self) -> 'UnquantizedTensor':
|
|
|
+ def to_ggml(self) -> UnquantizedTensor:
|
|
|
return self
|
|
|
|
|
|
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
|
|
|
+ def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
|
|
r = self.ndarray.shape[0] // 3
|
|
|
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
|
|
|
|
|
- def part(self, n_part: int) -> 'UnquantizedTensor':
|
|
|
+ def part(self, n_part: int) -> UnquantizedTensor:
|
|
|
r = self.ndarray.shape[0] // 3
|
|
|
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
|
|
|
|
|
- def permute(self, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
|
|
|
+ def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
|
|
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
|
|
|
|
|
|
|
|
|
-def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
|
|
+def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
|
|
tensor = lazy_tensor.load()
|
|
|
assert isinstance(tensor, UnquantizedTensor)
|
|
|
|
|
|
@@ -496,13 +497,13 @@ def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, conv
|
|
|
return tensor.ndarray
|
|
|
|
|
|
|
|
|
-GGMLCompatibleTensor = Union[UnquantizedTensor]
|
|
|
+GGMLCompatibleTensor = UnquantizedTensor
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class LazyTensor:
|
|
|
_load: Callable[[], Tensor]
|
|
|
- shape: List[int]
|
|
|
+ shape: list[int]
|
|
|
data_type: DataType
|
|
|
description: str
|
|
|
|
|
|
@@ -513,7 +514,7 @@ class LazyTensor:
|
|
|
(self.data_type, ret.data_type, self.description)
|
|
|
return ret
|
|
|
|
|
|
- def astype(self, data_type: DataType) -> 'LazyTensor':
|
|
|
+ def astype(self, data_type: DataType) -> LazyTensor:
|
|
|
self.validate_conversion_to(data_type)
|
|
|
|
|
|
def load() -> Tensor:
|
|
|
@@ -525,24 +526,24 @@ class LazyTensor:
|
|
|
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
|
|
|
|
|
|
|
|
|
-LazyModel = Dict[str, LazyTensor]
|
|
|
+LazyModel = dict[str, LazyTensor]
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class ModelPlus:
|
|
|
model: LazyModel
|
|
|
- paths: List[Path] # Where this was read from.
|
|
|
+ paths: list[Path] # Where this was read from.
|
|
|
format: Literal['ggml', 'torch', 'safetensors', 'none']
|
|
|
- vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
|
|
|
+ vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
|
|
|
|
|
|
|
|
|
-def merge_sharded(models: List[LazyModel]) -> LazyModel:
|
|
|
+def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
|
|
# Original LLaMA models have each file contain one part of each tensor.
|
|
|
# Use a dict instead of a set to preserve order.
|
|
|
names = {name: None for model in models for name in model}
|
|
|
|
|
|
def convert(name: str) -> LazyTensor:
|
|
|
- lazy_tensors: List[LazyTensor] = [model[name] for model in models]
|
|
|
+ lazy_tensors: list[LazyTensor] = [model[name] for model in models]
|
|
|
if len(lazy_tensors) == 1:
|
|
|
# only one file; don't go through this procedure since there might
|
|
|
# be quantized tensors
|
|
|
@@ -570,7 +571,7 @@ def merge_sharded(models: List[LazyModel]) -> LazyModel:
|
|
|
return {name: convert(name) for name in names}
|
|
|
|
|
|
|
|
|
-def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
|
|
|
+def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
|
|
formats = set(mp.format for mp in models_plus)
|
|
|
assert len(formats) == 1, "different formats?"
|
|
|
format = formats.pop()
|
|
|
@@ -674,7 +675,7 @@ class LazyUnpickler(pickle.Unpickler):
|
|
|
def rebuild_from_type_v2(func, new_type, args, state):
|
|
|
return func(*args)
|
|
|
|
|
|
- CLASSES: Dict[Tuple[str, str], Any] = {
|
|
|
+ CLASSES: dict[tuple[str, str], Any] = {
|
|
|
# getattr used here as a workaround for mypy not being smart enough to detrmine
|
|
|
# the staticmethods have a __func__ attribute.
|
|
|
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
|
|
@@ -707,15 +708,15 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
|
|
|
|
|
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
|
|
header_size, = struct.unpack('<Q', fp.read(8))
|
|
|
- header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
|
|
|
+ header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
|
|
|
# Use mmap for the actual data to avoid race conditions with the file offset.
|
|
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
|
|
byte_buf = mapped[8 + header_size:]
|
|
|
|
|
|
- def convert(info: Dict[str, Any]) -> LazyTensor:
|
|
|
+ def convert(info: dict[str, Any]) -> LazyTensor:
|
|
|
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
|
|
numpy_dtype = data_type.dtype
|
|
|
- shape: List[int] = info['shape']
|
|
|
+ shape: list[int] = info['shape']
|
|
|
begin, end = info['data_offsets']
|
|
|
assert 0 <= begin <= end <= len(byte_buf)
|
|
|
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
|
|
|
@@ -754,7 +755,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
|
|
|
In = TypeVar('In')
|
|
|
Out = TypeVar('Out')
|
|
|
|
|
|
-def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, use_processpool_executor: bool = False) -> Iterable[Out]:
|
|
|
+def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
|
|
|
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
|
|
fast enough, this will stop calling `func` at some point rather than
|
|
|
letting results pile up in memory. Specifically, there is a max of one
|
|
|
@@ -763,13 +764,13 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
|
|
yield from map(func, iterable)
|
|
|
# Not reached.
|
|
|
iterable = iter(iterable)
|
|
|
- executor_class: Union[Type[ThreadPoolExecutor], Type[ProcessPoolExecutor]]
|
|
|
+ executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
|
|
|
if use_processpool_executor:
|
|
|
executor_class = ProcessPoolExecutor
|
|
|
else:
|
|
|
executor_class = ThreadPoolExecutor
|
|
|
with executor_class(max_workers = max_workers) as executor:
|
|
|
- futures: List[concurrent.futures.Future[Out]] = []
|
|
|
+ futures: list[concurrent.futures.Future[Out]] = []
|
|
|
done = False
|
|
|
for _ in range(concurrency):
|
|
|
try:
|
|
|
@@ -893,13 +894,13 @@ class OutputFile:
|
|
|
of.close()
|
|
|
|
|
|
@staticmethod
|
|
|
- def do_item(item: Tuple[str, LazyTensor]) -> Tuple[DataType, NDArray]:
|
|
|
+ def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
|
|
|
name, lazy_tensor = item
|
|
|
tensor = lazy_tensor.load().to_ggml()
|
|
|
return (lazy_tensor.data_type, tensor.ndarray)
|
|
|
|
|
|
@staticmethod
|
|
|
- def maybe_do_quantize(item: Tuple[DataType, NDArray]) -> NDArray:
|
|
|
+ def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
|
|
|
dt, arr = item
|
|
|
if not isinstance(dt, QuantizedDataType):
|
|
|
return arr
|
|
|
@@ -940,7 +941,7 @@ class OutputFile:
|
|
|
|
|
|
of.close()
|
|
|
|
|
|
-def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
|
|
|
+def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
|
|
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
|
|
|
|
|
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
|
|
@@ -960,7 +961,7 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM
|
|
|
|
|
|
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
|
|
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
|
|
- should_skip: Set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
|
|
+ should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
|
|
|
|
|
tmp = model
|
|
|
|
|
|
@@ -995,12 +996,12 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
|
|
|
|
|
return out
|
|
|
|
|
|
-def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
|
|
|
+def nth_multifile_path(path: Path, n: int) -> Path | None:
|
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
|
the nth path in the model.
|
|
|
'''
|
|
|
# Support the following patterns:
|
|
|
- patterns: List[Tuple[str, str]] = [
|
|
|
+ patterns: list[tuple[str, str]] = [
|
|
|
# - x.00.pth, x.01.pth, etc.
|
|
|
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
|
|
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
|
|
@@ -1016,11 +1017,11 @@ def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
|
|
|
return None
|
|
|
|
|
|
|
|
|
-def find_multifile_paths(path: Path) -> List[Path]:
|
|
|
+def find_multifile_paths(path: Path) -> list[Path]:
|
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
|
the whole list of paths in the model.
|
|
|
'''
|
|
|
- ret: List[Path] = []
|
|
|
+ ret: list[Path] = []
|
|
|
for i in itertools.count():
|
|
|
nth_path = nth_multifile_path(path, i)
|
|
|
if nth_path is None:
|
|
|
@@ -1051,7 +1052,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
|
|
path = files[0]
|
|
|
|
|
|
paths = find_multifile_paths(path)
|
|
|
- models_plus: List[ModelPlus] = []
|
|
|
+ models_plus: list[ModelPlus] = []
|
|
|
for path in paths:
|
|
|
print(f"Loading model file {path}")
|
|
|
models_plus.append(lazy_load_file(path))
|
|
|
@@ -1060,7 +1061,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
|
|
return model_plus
|
|
|
|
|
|
|
|
|
-def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
|
|
|
+def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
|
|
|
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
|
|
# a directory, it might be the model directory, and tokenizer.model might
|
|
|
# be in the parent of that.
|
|
|
@@ -1091,7 +1092,7 @@ def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, Sentence
|
|
|
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
|
|
|
|
|
|
|
|
-def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
|
|
+def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
|
|
namestr = {
|
|
|
GGMLFileType.AllF32: "f32",
|
|
|
GGMLFileType.MostlyF16: "f16",
|
|
|
@@ -1114,7 +1115,7 @@ def do_dump_model(model_plus: ModelPlus) -> None:
|
|
|
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
|
|
|
|
|
|
|
|
|
-def main(args_in: Optional[List[str]] = None) -> None:
|
|
|
+def main(args_in: list[str] | None = None) -> None:
|
|
|
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
|
|
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
|
|
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|