|
|
@@ -574,6 +574,8 @@ struct vk_device_struct {
|
|
|
vk_pipeline pipeline_opt_step_sgd_f32;
|
|
|
vk_pipeline pipeline_conv2d_f32[CONV_SHAPE_COUNT];
|
|
|
vk_pipeline pipeline_conv2d_f16_f32[CONV_SHAPE_COUNT];
|
|
|
+ vk_pipeline pipeline_conv_transpose_2d_f32[CONV_SHAPE_COUNT];
|
|
|
+ vk_pipeline pipeline_conv_transpose_2d_f16_f32[CONV_SHAPE_COUNT];
|
|
|
vk_pipeline pipeline_conv2d_dw_whcn_f32, pipeline_conv2d_dw_whcn_f16_f32;
|
|
|
vk_pipeline pipeline_conv2d_dw_cwhn_f32, pipeline_conv2d_dw_cwhn_f16_f32;
|
|
|
|
|
|
@@ -1117,6 +1119,56 @@ template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
|
|
|
init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
|
|
|
}
|
|
|
|
|
|
+struct vk_op_conv_transpose_2d_push_constants {
|
|
|
+ uint32_t Cout;
|
|
|
+ uint32_t Cin;
|
|
|
+ uint32_t N;
|
|
|
+
|
|
|
+ uint32_t KW;
|
|
|
+ uint32_t KH;
|
|
|
+ uint32_t W;
|
|
|
+ uint32_t H;
|
|
|
+ uint32_t OW;
|
|
|
+ uint32_t OH;
|
|
|
+
|
|
|
+ uint32_t s0;
|
|
|
+ uint32_t s1;
|
|
|
+ uint32_t p0;
|
|
|
+ uint32_t p1;
|
|
|
+ uint32_t d0;
|
|
|
+ uint32_t d1;
|
|
|
+
|
|
|
+ uint32_t nb01;
|
|
|
+ uint32_t nb02;
|
|
|
+ uint32_t nb03;
|
|
|
+
|
|
|
+ uint32_t nb11;
|
|
|
+ uint32_t nb12;
|
|
|
+ uint32_t nb13;
|
|
|
+
|
|
|
+ uint32_t nb1;
|
|
|
+ uint32_t nb2;
|
|
|
+ uint32_t nb3;
|
|
|
+
|
|
|
+ // init_fastdiv_values constants for dividing by KW, KW*KH, OW, OW*OH, s0, s1
|
|
|
+ uint32_t KWmp; uint32_t KWL;
|
|
|
+ uint32_t KWKHmp; uint32_t KWKHL;
|
|
|
+ uint32_t OWmp; uint32_t OWL;
|
|
|
+ uint32_t OWOHmp; uint32_t OWOHL;
|
|
|
+ uint32_t s0mp; uint32_t s0L;
|
|
|
+ uint32_t s1mp; uint32_t s1L;
|
|
|
+};
|
|
|
+
|
|
|
+template <> void init_pushconst_fastdiv(vk_op_conv_transpose_2d_push_constants &p) {
|
|
|
+ // Compute magic values to divide by KW, KW*KH, OW, OW*OH, s0, s1
|
|
|
+ init_fastdiv_values(p.KW, p.KWmp, p.KWL);
|
|
|
+ init_fastdiv_values(p.KW*p.KH, p.KWKHmp, p.KWKHL);
|
|
|
+ init_fastdiv_values(p.OW, p.OWmp, p.OWL);
|
|
|
+ init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
|
|
|
+ init_fastdiv_values(p.s0, p.s0mp, p.s0L);
|
|
|
+ init_fastdiv_values(p.s1, p.s1mp, p.s1L);
|
|
|
+}
|
|
|
+
|
|
|
struct vk_op_conv2d_dw_push_constants {
|
|
|
uint32_t ne;
|
|
|
uint32_t batches;
|
|
|
@@ -1322,7 +1374,7 @@ class vk_perf_logger {
|
|
|
flops[name].push_back(m * n * (k + (k - 1)) * batch);
|
|
|
return;
|
|
|
}
|
|
|
- if (node->op == GGML_OP_CONV_2D) {
|
|
|
+ if (node->op == GGML_OP_CONV_2D || node->op == GGML_OP_CONV_TRANSPOSE_2D) {
|
|
|
std::string name = ggml_op_name(node->op);
|
|
|
ggml_tensor * knl = node->src[0];
|
|
|
uint64_t OW = node->ne[0];
|
|
|
@@ -1331,7 +1383,7 @@ class vk_perf_logger {
|
|
|
uint64_t Cout = node->ne[2];
|
|
|
uint64_t KW = knl->ne[0];
|
|
|
uint64_t KH = knl->ne[1];
|
|
|
- uint64_t Cin = knl->ne[2];
|
|
|
+ uint64_t Cin = node->src[1]->ne[2];
|
|
|
// KxCRS @ CRSxNPQ = KxNPQ -> M=K, K=CRS, N=NPQ
|
|
|
uint64_t size_M = Cout;
|
|
|
uint64_t size_K = Cin * KW * KH;
|
|
|
@@ -3492,7 +3544,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_opt_step_sgd_f32, "opt_step_sgd_f32", opt_step_sgd_f32_len, opt_step_sgd_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
|
|
- // conv2d
|
|
|
+ // conv2d, conv_transpose_2d
|
|
|
for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
|
|
|
uint32_t conv2d_WG_SIZE = 256;
|
|
|
uint32_t conv2d_BS_K = 128;
|
|
|
@@ -3567,31 +3619,30 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|
|
std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 };
|
|
|
std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
|
|
|
|
|
|
+#define CREATE_CONV(name, type_suffix, spv_suffix) \
|
|
|
+ ggml_vk_create_pipeline( \
|
|
|
+ device, device->pipeline_##name##type_suffix[s], #name #type_suffix, \
|
|
|
+ name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \
|
|
|
+ sizeof(vk_op_##name##_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
+#define CREATE_CONVS(spv_suffix) \
|
|
|
+ CREATE_CONV(conv2d, _f32, spv_suffix) \
|
|
|
+ CREATE_CONV(conv2d, _f16_f32, spv_suffix) \
|
|
|
+ if (device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_conv_transpose_2d_push_constants)) { \
|
|
|
+ CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \
|
|
|
+ CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix) \
|
|
|
+ }
|
|
|
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
|
|
if (device->coopmat2) {
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f32[s], "conv2d_f32", conv2d_f32_cm2_len, conv2d_f32_cm2_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f16_f32[s], "conv2d_f16_f32", conv2d_f16_f32_cm2_len, conv2d_f16_f32_cm2_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
+ CREATE_CONVS(_cm2)
|
|
|
} else
|
|
|
#endif
|
|
|
if (conv2d_UNROLL) {
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f32[s], "conv2d_f32", conv2d_f32_unroll_len, conv2d_f32_unroll_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f16_f32[s], "conv2d_f16_f32", conv2d_f16_f32_unroll_len, conv2d_f16_f32_unroll_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
+ CREATE_CONVS(_unroll)
|
|
|
} else {
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f32[s], "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
- ggml_vk_create_pipeline(
|
|
|
- device, device->pipeline_conv2d_f16_f32[s], "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
|
|
|
- sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
|
|
|
+ CREATE_CONVS( )
|
|
|
}
|
|
|
+#undef CREATE_CONV
|
|
|
+#undef CREATE_CONVS
|
|
|
}
|
|
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
|
|
@@ -7548,6 +7599,33 @@ static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst)
|
|
|
return elements;
|
|
|
}
|
|
|
|
|
|
+static std::array<uint32_t, 3> ggml_vk_get_conv_transpose_2d_elements(const ggml_tensor *dst) {
|
|
|
+ const ggml_tensor *src0 = dst->src[0];
|
|
|
+ const ggml_tensor *src1 = dst->src[1];
|
|
|
+
|
|
|
+ // src0 - kernel: [KW, KH, Cout, Cin]
|
|
|
+ // src1 - input: [W, H, Cin, N]
|
|
|
+ // dst - result: [OW, OH, Cout, N]
|
|
|
+
|
|
|
+ auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
|
|
|
+ return (ins - 1) * s - 2 * p + (ks - 1) * d + 1;
|
|
|
+ };
|
|
|
+ // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
|
|
|
+ int64_t W = src1->ne[0];
|
|
|
+ int64_t H = src1->ne[1];
|
|
|
+ int64_t KW = src0->ne[0];
|
|
|
+ int64_t KH = src0->ne[1];
|
|
|
+ int64_t Cout = src0->ne[2];
|
|
|
+ int64_t N = src1->ne[3];
|
|
|
+ int64_t OH = calc_conv_output_size(H, KH, dst->op_params[0], 0, 1);
|
|
|
+ int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], 0, 1);
|
|
|
+ int64_t NPQ = N * OW * OH;
|
|
|
+
|
|
|
+ // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
|
|
|
+ std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
|
|
|
+ return elements;
|
|
|
+}
|
|
|
+
|
|
|
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) {
|
|
|
switch (op) {
|
|
|
case GGML_OP_GET_ROWS:
|
|
|
@@ -7925,9 +8003,12 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|
|
}
|
|
|
return nullptr;
|
|
|
case GGML_OP_CONV_2D:
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
|
|
|
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
|
|
- auto elements = ggml_vk_get_conv_elements(dst);
|
|
|
+ std::array<uint32_t, 3> elements;
|
|
|
+ if (op == GGML_OP_CONV_2D) elements = ggml_vk_get_conv_elements(dst);
|
|
|
+ else if (op == GGML_OP_CONV_TRANSPOSE_2D) elements = ggml_vk_get_conv_transpose_2d_elements(dst);
|
|
|
vk_conv_shapes shape;
|
|
|
|
|
|
uint32_t tiles[CONV_SHAPE_COUNT];
|
|
|
@@ -7947,10 +8028,18 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|
|
shape = CONV_SHAPE_64x32;
|
|
|
}
|
|
|
|
|
|
- if (src0->type == GGML_TYPE_F32) {
|
|
|
- return ctx->device->pipeline_conv2d_f32[shape];
|
|
|
- } else if (src0->type == GGML_TYPE_F16) {
|
|
|
- return ctx->device->pipeline_conv2d_f16_f32[shape];
|
|
|
+ if (op == GGML_OP_CONV_2D) {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ return ctx->device->pipeline_conv2d_f32[shape];
|
|
|
+ } else if (src0->type == GGML_TYPE_F16) {
|
|
|
+ return ctx->device->pipeline_conv2d_f16_f32[shape];
|
|
|
+ }
|
|
|
+ } else if (op == GGML_OP_CONV_TRANSPOSE_2D) {
|
|
|
+ if (src0->type == GGML_TYPE_F32) {
|
|
|
+ return ctx->device->pipeline_conv_transpose_2d_f32[shape];
|
|
|
+ } else if (src0->type == GGML_TYPE_F16) {
|
|
|
+ return ctx->device->pipeline_conv_transpose_2d_f16_f32[shape];
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
return nullptr;
|
|
|
@@ -8350,6 +8439,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|
|
{
|
|
|
elements = ggml_vk_get_conv_elements(dst);
|
|
|
} break;
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
+ {
|
|
|
+ elements = ggml_vk_get_conv_transpose_2d_elements(dst);
|
|
|
+ } break;
|
|
|
case GGML_OP_ADD:
|
|
|
case GGML_OP_SUB:
|
|
|
case GGML_OP_DIV:
|
|
|
@@ -9523,6 +9616,55 @@ static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx,
|
|
|
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D, std::move(p), dryrun);
|
|
|
}
|
|
|
|
|
|
+static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
|
|
|
+ const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
|
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
|
|
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
+
|
|
|
+ GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
+
|
|
|
+ GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
|
|
|
+ GGML_ASSERT(nb10 == sizeof(float));
|
|
|
+ GGML_ASSERT(nb0 == sizeof(float));
|
|
|
+
|
|
|
+ vk_op_conv_transpose_2d_push_constants p{};
|
|
|
+ p.Cout = static_cast<uint32_t>(ne02);
|
|
|
+ p.Cin = static_cast<uint32_t>(ne03);
|
|
|
+ p.N = static_cast<uint32_t>(ne13);
|
|
|
+
|
|
|
+ p.KW = static_cast<uint32_t>(ne00);
|
|
|
+ p.KH = static_cast<uint32_t>(ne01);
|
|
|
+ p.W = static_cast<uint32_t>(ne10);
|
|
|
+ p.H = static_cast<uint32_t>(ne11);
|
|
|
+ p.OW = static_cast<uint32_t>(ne0);
|
|
|
+ p.OH = static_cast<uint32_t>(ne1);
|
|
|
+
|
|
|
+ p.s0 = static_cast<uint32_t>(dst->op_params[0]);
|
|
|
+ p.s1 = static_cast<uint32_t>(dst->op_params[0]);
|
|
|
+ p.p0 = 0;
|
|
|
+ p.p1 = 0;
|
|
|
+ p.d0 = 1;
|
|
|
+ p.d1 = 1;
|
|
|
+
|
|
|
+ p.nb01 = static_cast<uint32_t>(nb01 / nb00);
|
|
|
+ p.nb02 = static_cast<uint32_t>(nb02 / nb00);
|
|
|
+ p.nb03 = static_cast<uint32_t>(nb03 / nb00);
|
|
|
+
|
|
|
+ p.nb11 = static_cast<uint32_t>(nb11 / nb10);
|
|
|
+ p.nb12 = static_cast<uint32_t>(nb12 / nb10);
|
|
|
+ p.nb13 = static_cast<uint32_t>(nb13 / nb10);
|
|
|
+
|
|
|
+ p.nb1 = static_cast<uint32_t>(nb1 / nb0);
|
|
|
+ p.nb2 = static_cast<uint32_t>(nb2 / nb0);
|
|
|
+ p.nb3 = static_cast<uint32_t>(nb3 / nb0);
|
|
|
+
|
|
|
+ GGML_ASSERT(ne02 == ne2);
|
|
|
+ GGML_ASSERT(ne03 == ne12);
|
|
|
+
|
|
|
+ ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p), dryrun);
|
|
|
+}
|
|
|
+
|
|
|
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
|
vk_op_conv2d_dw_push_constants p{};
|
|
|
p.ne = ggml_nelements(dst);
|
|
|
@@ -10615,6 +10757,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
|
case GGML_OP_POOL_2D:
|
|
|
case GGML_OP_CONV_2D:
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
case GGML_OP_CONV_2D_DW:
|
|
|
case GGML_OP_RWKV_WKV6:
|
|
|
case GGML_OP_RWKV_WKV7:
|
|
|
@@ -10686,6 +10829,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
|
case GGML_OP_POOL_2D:
|
|
|
case GGML_OP_CONV_2D:
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
case GGML_OP_CONV_2D_DW:
|
|
|
case GGML_OP_LEAKY_RELU:
|
|
|
case GGML_OP_OPT_STEP_SGD:
|
|
|
@@ -10997,6 +11141,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
|
|
|
case GGML_OP_CONV_2D:
|
|
|
ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
|
|
+ break;
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
+ ggml_vk_conv_transpose_2d(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
+
|
|
|
break;
|
|
|
case GGML_OP_CONV_2D_DW:
|
|
|
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
@@ -11137,6 +11285,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
|
case GGML_OP_POOL_2D:
|
|
|
case GGML_OP_CONV_2D:
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
case GGML_OP_CONV_2D_DW:
|
|
|
case GGML_OP_RWKV_WKV6:
|
|
|
case GGML_OP_RWKV_WKV7:
|
|
|
@@ -11794,10 +11943,10 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|
|
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
|
|
|
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
|
|
|
total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
|
|
|
- } else if (cgraph->nodes[i]->op == GGML_OP_CONV_2D) {
|
|
|
+ } else if (cgraph->nodes[i]->op == GGML_OP_CONV_2D || cgraph->nodes[i]->op == GGML_OP_CONV_TRANSPOSE_2D) {
|
|
|
// Return CRSxNPQxsizeof(*) to account as many bytes as mul_mat has in im2col->mul_mat mode.
|
|
|
auto CRS_size =
|
|
|
- cgraph->nodes[i]->src[0]->ne[0] * cgraph->nodes[i]->src[0]->ne[1] * cgraph->nodes[i]->src[0]->ne[2];
|
|
|
+ cgraph->nodes[i]->src[0]->ne[0] * cgraph->nodes[i]->src[0]->ne[1] * cgraph->nodes[i]->src[1]->ne[2];
|
|
|
auto NPQ_size = cgraph->nodes[i]->ne[0] * cgraph->nodes[i]->ne[1] * cgraph->nodes[i]->ne[3];
|
|
|
total_mat_mul_bytes += NPQ_size * CRS_size * ggml_type_size(cgraph->nodes[i]->type);
|
|
|
}
|
|
|
@@ -12618,10 +12767,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
|
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
|
|
case GGML_OP_CONV_2D:
|
|
|
+ case GGML_OP_CONV_TRANSPOSE_2D:
|
|
|
{
|
|
|
// Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
|
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
|
const vk_device& device = ggml_vk_get_device(ctx->device);
|
|
|
+ if (op->op == GGML_OP_CONV_TRANSPOSE_2D &&
|
|
|
+ device->properties.limits.maxPushConstantsSize < sizeof(vk_op_conv_transpose_2d_push_constants)) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
// Channel-contiguous format is not supported yet.
|
|
|
return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
|
|
|
op->src[1]->type == GGML_TYPE_F32 &&
|
|
|
@@ -13240,6 +13394,9 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
|
|
|
const int32_t d0 = tensor->op_params[4];
|
|
|
const int32_t d1 = tensor->op_params[5];
|
|
|
tensor_clone = ggml_conv_2d(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1);
|
|
|
+ } else if (tensor->op == GGML_OP_CONV_TRANSPOSE_2D) {
|
|
|
+ const int32_t s = tensor->op_params[0];
|
|
|
+ tensor_clone = ggml_conv_transpose_2d_p0(ggml_ctx, src_clone[0], src_clone[1], s);
|
|
|
} else if (tensor->op == GGML_OP_LEAKY_RELU) {
|
|
|
const float * op_params = (const float *)tensor->op_params;
|
|
|
tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false);
|