|
|
@@ -2791,13 +2791,7 @@ struct llama_model_loader {
|
|
|
|
|
|
std::vector<no_init<uint8_t>> read_buf;
|
|
|
|
|
|
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
|
|
|
- struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
|
|
|
- if (!cur) {
|
|
|
- // some tensors may be allocated in a different context
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
+ for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
|
|
if (progress_callback) {
|
|
|
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
|
|
|
return false;
|
|
|
@@ -3722,7 +3716,7 @@ static bool llm_load_tensors(
|
|
|
}
|
|
|
|
|
|
// create one context per buffer type
|
|
|
- size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors;
|
|
|
+ size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
|
|
|
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
|
|
for (auto & it : buft_layer_count) {
|
|
|
struct ggml_init_params params = {
|
|
|
@@ -3860,6 +3854,7 @@ static bool llm_load_tensors(
|
|
|
} else {
|
|
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
|
|
|
ml.n_created--; // artificial tensor
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
@@ -4396,6 +4391,7 @@ static bool llm_load_tensors(
|
|
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
|
|
|
ml.n_created--; // artificial tensor
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
|
|
|
const int64_t n_ff = hparams.n_ff;
|
|
|
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|