|
|
@@ -216,6 +216,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_RWKV6,
|
|
|
LLM_ARCH_GRANITE,
|
|
|
LLM_ARCH_GRANITE_MOE,
|
|
|
+ LLM_ARCH_CHAMELEON,
|
|
|
LLM_ARCH_UNKNOWN,
|
|
|
};
|
|
|
|
|
|
@@ -268,6 +269,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_RWKV6, "rwkv6" },
|
|
|
{ LLM_ARCH_GRANITE, "granite" },
|
|
|
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
|
|
+ { LLM_ARCH_CHAMELEON, "chameleon" },
|
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
|
};
|
|
|
|
|
|
@@ -304,6 +306,7 @@ enum llm_kv {
|
|
|
LLM_KV_DECODER_START_TOKEN_ID,
|
|
|
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
|
|
|
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
|
|
|
+ LLM_KV_SWIN_NORM,
|
|
|
LLM_KV_RESCALE_EVERY_N_LAYERS,
|
|
|
LLM_KV_TIME_MIX_EXTRA_DIM,
|
|
|
LLM_KV_TIME_DECAY_EXTRA_DIM,
|
|
|
@@ -411,6 +414,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
|
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
|
|
|
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
|
|
|
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
|
|
|
+ { LLM_KV_SWIN_NORM, "%s.swin_norm" },
|
|
|
{ LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
|
|
|
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
|
|
|
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
|
|
|
@@ -1499,6 +1503,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
|
},
|
|
|
},
|
|
|
+ {
|
|
|
+ LLM_ARCH_CHAMELEON,
|
|
|
+ {
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
|
|
+ },
|
|
|
+ },
|
|
|
{
|
|
|
LLM_ARCH_UNKNOWN,
|
|
|
{
|
|
|
@@ -2362,6 +2385,7 @@ struct llama_hparams {
|
|
|
bool vocab_only;
|
|
|
bool rope_finetuned;
|
|
|
bool use_par_res;
|
|
|
+ bool swin_norm;
|
|
|
|
|
|
uint32_t n_vocab;
|
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
|
@@ -6084,6 +6108,18 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_CHAMELEON:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
|
|
|
+ ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 32: model.type = e_model::MODEL_7B; break;
|
|
|
+ case 48: model.type = e_model::MODEL_34B; break;
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
default: (void)0;
|
|
|
}
|
|
|
|
|
|
@@ -6341,6 +6377,11 @@ static void llm_load_vocab(
|
|
|
} else if (
|
|
|
tokenizer_pre == "exaone") {
|
|
|
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
|
|
+ } else if (
|
|
|
+ tokenizer_pre == "chameleon") {
|
|
|
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
|
|
|
+ vocab.tokenizer_add_bos = true;
|
|
|
+ vocab.tokenizer_clean_spaces = false;
|
|
|
} else {
|
|
|
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
|
|
}
|
|
|
@@ -8728,6 +8769,45 @@ static bool llm_load_tensors(
|
|
|
}
|
|
|
|
|
|
} break;
|
|
|
+ case LLM_ARCH_CHAMELEON:
|
|
|
+ {
|
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
+
|
|
|
+ // output
|
|
|
+ {
|
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
+ if (model.output == NULL) {
|
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
|
+
|
|
|
+ auto & layer = model.layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
|
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
|
|
|
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
|
|
|
+ layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+ layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
|
|
+
|
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
|
+
|
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
|
+ }
|
|
|
+ } break;
|
|
|
default:
|
|
|
throw std::runtime_error("unknown architecture");
|
|
|
}
|
|
|
@@ -15872,6 +15952,184 @@ struct llm_build_context {
|
|
|
|
|
|
return gf;
|
|
|
}
|
|
|
+
|
|
|
+ // ref: https://github.com/facebookresearch/chameleon
|
|
|
+ // based on the original build_llama() function, changes:
|
|
|
+ // * qk-norm
|
|
|
+ // * swin-norm
|
|
|
+ // * removed bias
|
|
|
+ // * removed MoE
|
|
|
+ struct ggml_cgraph * build_chameleon() {
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
+
|
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ struct ggml_tensor * cur;
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ if (hparams.swin_norm) {
|
|
|
+ cur = inpL;
|
|
|
+ } else {
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ {
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ if (model.layers[il].attn_q_norm) {
|
|
|
+ Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
|
|
|
+ ggml_element_size(Qcur) * n_embd_head,
|
|
|
+ ggml_element_size(Qcur) * n_embd_head * n_head,
|
|
|
+ 0);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
|
|
+ model.layers[il].attn_q_norm,
|
|
|
+ model.layers[il].attn_q_norm_b,
|
|
|
+ LLM_NORM, cb, il);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (model.layers[il].attn_k_norm) {
|
|
|
+ Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
|
|
|
+ ggml_element_size(Kcur) * n_embd_head,
|
|
|
+ ggml_element_size(Kcur) * n_embd_head * n_head_kv,
|
|
|
+ 0);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
|
|
+ model.layers[il].attn_k_norm,
|
|
|
+ model.layers[il].attn_k_norm_b,
|
|
|
+ LLM_NORM, cb, il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
|
+ model.layers[il].wo, nullptr,
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
+
|
|
|
+ if (hparams.swin_norm) {
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ n_tokens = n_outputs;
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ if (!hparams.swin_norm) {
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
|
|
+ model.layers[il].ffn_up, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ if (hparams.swin_norm) {
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
|
+ cb(cur, "result_output_with_img_logits", -1);
|
|
|
+
|
|
|
+ // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
|
|
|
+ // Needs to be removed once image outputs are supported.
|
|
|
+ int img_token_end_idx = 8196;
|
|
|
+ int img_token_start_idx = 4;
|
|
|
+ int num_img_tokens = img_token_end_idx - img_token_start_idx;
|
|
|
+ // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
|
|
|
+ // which ensures that text token values are always at least larger than image token values
|
|
|
+ struct ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
|
|
|
+ img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
|
|
|
+ cb(img_logits, "img_logits", -1);
|
|
|
+ cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+
|
|
|
+ return gf;
|
|
|
+ }
|
|
|
};
|
|
|
|
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
|
@@ -16132,6 +16390,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
|
result = llm.build_rwkv6();
|
|
|
} break;
|
|
|
+ case LLM_ARCH_CHAMELEON:
|
|
|
+ {
|
|
|
+ result = llm.build_chameleon();
|
|
|
+ } break;
|
|
|
default:
|
|
|
GGML_ABORT("fatal error");
|
|
|
}
|
|
|
@@ -19257,6 +19519,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
case LLM_ARCH_CHATGLM:
|
|
|
case LLM_ARCH_GRANITE:
|
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
|
+ case LLM_ARCH_CHAMELEON:
|
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
|
|
// the pairs of head values are offset by n_rot/2
|