|
|
@@ -1641,6 +1641,7 @@ struct llama_cparams {
|
|
|
float yarn_attn_factor;
|
|
|
float yarn_beta_fast;
|
|
|
float yarn_beta_slow;
|
|
|
+ float defrag_thold;
|
|
|
|
|
|
bool mul_mat_q;
|
|
|
bool offload_kqv;
|
|
|
@@ -5117,16 +5118,16 @@ struct llm_build_context {
|
|
|
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
|
|
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
|
|
|
- for (int i = 0; i < n_kv; ++i) {
|
|
|
- const int id = ids[i];
|
|
|
+ for (uint32_t i = 0; i < ids.size(); ++i) {
|
|
|
+ const uint32_t id = ids[i];
|
|
|
|
|
|
- if (i == id || id == n_kv) {
|
|
|
+ if (i == id || id == ids.size()) {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- int nm = 1;
|
|
|
+ uint32_t nm = 1;
|
|
|
|
|
|
- while (i + nm < n_kv && (int) ids[i + nm] == id + nm) {
|
|
|
+ while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
|
|
nm++;
|
|
|
}
|
|
|
|
|
|
@@ -5158,6 +5159,8 @@ struct llm_build_context {
|
|
|
i += nm - 1;
|
|
|
}
|
|
|
|
|
|
+ //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
|
|
+
|
|
|
return gf;
|
|
|
}
|
|
|
|
|
|
@@ -7938,6 +7941,8 @@ static int llama_decode_internal(
|
|
|
batch.seq_id = seq_id_arr.data();
|
|
|
}
|
|
|
|
|
|
+ llama_kv_cache_update(&lctx);
|
|
|
+
|
|
|
// if we have enough unused cells before the current head ->
|
|
|
// better to start searching from the beginning of the cache, hoping to fill it
|
|
|
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
|
|
@@ -7956,8 +7961,6 @@ static int llama_decode_internal(
|
|
|
|
|
|
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
|
|
|
|
|
- llama_kv_cache_update(&lctx);
|
|
|
-
|
|
|
ggml_backend_sched_reset(lctx.sched);
|
|
|
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
|
|
|
|
|
@@ -8007,6 +8010,18 @@ static int llama_decode_internal(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ // decide if we need to defrag the kv cache
|
|
|
+ if (cparams.defrag_thold >= 0.0f) {
|
|
|
+ const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens)/float(kv_self.n) : 0.0f;
|
|
|
+
|
|
|
+ // queue defragmentation for next llama_kv_cache_update
|
|
|
+ if (fragmentation > cparams.defrag_thold) {
|
|
|
+ //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
|
|
|
+
|
|
|
+ llama_kv_cache_defrag(kv_self);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
#ifdef GGML_PERF
|
|
|
// print timing information per ggml operation (for debugging purposes)
|
|
|
// requires GGML_PERF to be defined
|
|
|
@@ -8098,12 +8113,16 @@ static int llama_decode_internal(
|
|
|
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
auto & kv_self = lctx.kv_self;
|
|
|
|
|
|
+ const auto & hparams = lctx.model.hparams;
|
|
|
+
|
|
|
+ const uint32_t n_layer = hparams.n_layer;
|
|
|
+
|
|
|
const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
|
|
const uint32_t n_used = kv_self.used;
|
|
|
|
|
|
assert(n_used <= n_kv);
|
|
|
|
|
|
- const int64_t t_start = ggml_time_us();
|
|
|
+ //const int64_t t_start = ggml_time_us();
|
|
|
|
|
|
// number of cells moved
|
|
|
uint32_t n_moves = 0;
|
|
|
@@ -8127,15 +8146,26 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
|
|
|
// found a hole - fill it with data from the end of the cache
|
|
|
|
|
|
- // determine the size of the hole
|
|
|
uint32_t nh = 1;
|
|
|
+
|
|
|
+ // determine the size of the hole
|
|
|
while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
|
|
|
nh++;
|
|
|
}
|
|
|
|
|
|
- // starting from the end, find nh non-empty cells
|
|
|
+ // each move requires 6*n_layer tensors (see build_defrag)
|
|
|
+ // - source view, destination view, copy operation
|
|
|
+ // - x2 for keys and values
|
|
|
+ //
|
|
|
+ if (6*(n_moves + nh)*n_layer >= LLAMA_MAX_NODES) {
|
|
|
+ // the graph is too big, we cannot move more cells
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
uint32_t nf = 0;
|
|
|
uint32_t is = n_kv - 1;
|
|
|
+
|
|
|
+ // starting from the end, find nh non-empty cells
|
|
|
for (; is > i0; --is) {
|
|
|
const auto & cell1 = kv_self.cells[is];
|
|
|
|
|
|
@@ -8156,11 +8186,17 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
|
|
|
nf = 0;
|
|
|
|
|
|
+ uint32_t i1 = is;
|
|
|
+
|
|
|
+ // are we moving a continuous block of memory?
|
|
|
+ bool cont = false;
|
|
|
+
|
|
|
// go back and move the nf cells to the hole
|
|
|
- for (uint32_t i1 = is; i1 < n_kv; ++i1) {
|
|
|
- const auto & cell1 = kv_self.cells[i1];
|
|
|
+ for (; i1 < n_kv; ++i1) {
|
|
|
+ auto & cell1 = kv_self.cells[i1];
|
|
|
|
|
|
if (cell1.is_empty() || ids[i1] != n_kv) {
|
|
|
+ cont = false;
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
@@ -8170,11 +8206,23 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
// move the cell meta data
|
|
|
kv_self.cells[i0 + nf] = cell1;
|
|
|
|
|
|
- n_moves++;
|
|
|
+ // clear the old cell and move the head there
|
|
|
+ cell1 = llama_kv_cell();
|
|
|
+ kv_self.head = n_used;
|
|
|
+
|
|
|
+ if (!cont) {
|
|
|
+ n_moves++;
|
|
|
+ cont = true;
|
|
|
+ }
|
|
|
+
|
|
|
nf++;
|
|
|
+
|
|
|
+ if (nf == nh) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, n_kv, i0, i0 + nh);
|
|
|
+ //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
|
|
|
|
|
i0 += nh - 1;
|
|
|
}
|
|
|
@@ -8183,15 +8231,9 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
|
|
-
|
|
|
- kv_self.head = n_used;
|
|
|
- kv_self.used = n_used;
|
|
|
+ //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
|
|
|
|
|
- // zero the rest of the cells
|
|
|
- for (uint32_t i = n_used; i < n_kv; ++i) {
|
|
|
- kv_self.cells[i] = llama_kv_cell();
|
|
|
- }
|
|
|
+ //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
|
|
|
|
|
#if 0
|
|
|
// CPU defrag
|
|
|
@@ -8203,9 +8245,6 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
// likely not worth the effort, as we have ggml_graph based defrag
|
|
|
//
|
|
|
|
|
|
- const auto & hparams = lctx.model.hparams;
|
|
|
-
|
|
|
- const uint32_t n_layer = hparams.n_layer;
|
|
|
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
|
|
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
|
|
|
|
|
@@ -8274,9 +8313,9 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|
|
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
|
|
|
#endif
|
|
|
|
|
|
- const int64_t t_end = ggml_time_us();
|
|
|
+ //const int64_t t_end = ggml_time_us();
|
|
|
|
|
|
- LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
|
|
|
+ //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
|
|
|
}
|
|
|
|
|
|
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
|
|
@@ -11670,6 +11709,7 @@ struct llama_context_params llama_context_default_params() {
|
|
|
/*.yarn_beta_fast =*/ 32.0f,
|
|
|
/*.yarn_beta_slow =*/ 1.0f,
|
|
|
/*.yarn_orig_ctx =*/ 0,
|
|
|
+ /*.defrag_thold =*/ -1.0f,
|
|
|
/*.cb_eval =*/ nullptr,
|
|
|
/*.cb_eval_user_data =*/ nullptr,
|
|
|
/*.type_k =*/ GGML_TYPE_F16,
|
|
|
@@ -11834,6 +11874,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
cparams.yarn_attn_factor = params.yarn_attn_factor;
|
|
|
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
|
|
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
|
|
+ cparams.defrag_thold = params.defrag_thold;
|
|
|
cparams.mul_mat_q = params.mul_mat_q;
|
|
|
cparams.offload_kqv = params.offload_kqv;
|
|
|
cparams.do_pooling = params.do_pooling;
|
|
|
@@ -12035,7 +12076,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
}
|
|
|
|
|
|
// buffer used to store the computation graph and the tensor meta data
|
|
|
- ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
|
|
|
+ ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
|
|
|
|
|
|
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
|
|
|
|