|
|
@@ -286,10 +286,11 @@ static double nmse(const float * a, const float * b, size_t n) {
|
|
|
return mse_a_b / mse_a_0;
|
|
|
}
|
|
|
|
|
|
-// difference between 2 integer sets (Jaccard distance, 0 - no difference, 1 - no overlap)
|
|
|
-static double jdst(const int32_t * a, const int32_t * b, size_t n) {
|
|
|
- std::unordered_map<int32_t, size_t> set_a;
|
|
|
- std::unordered_map<int32_t, size_t> set_b;
|
|
|
+// difference between 2 sets (Jaccard distance, 0 - no difference, 1 - no overlap)
|
|
|
+template <typename T>
|
|
|
+static double jdst(const T * a, const T * b, size_t n) {
|
|
|
+ std::unordered_map<T, size_t> set_a;
|
|
|
+ std::unordered_map<T, size_t> set_b;
|
|
|
|
|
|
for (size_t i = 0; i < n; ++i) {
|
|
|
set_a[a[i]]++;
|
|
|
@@ -5001,42 +5002,94 @@ struct test_top_k : public test_case {
|
|
|
const ggml_type type;
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
const int k;
|
|
|
+ const bool ties;
|
|
|
+ ggml_tensor * input {};
|
|
|
|
|
|
std::string vars() override {
|
|
|
- return VARS_TO_STR3(type, ne, k);
|
|
|
+ return VARS_TO_STR4(type, ne, k, ties);
|
|
|
}
|
|
|
|
|
|
test_top_k(ggml_type type = GGML_TYPE_F32,
|
|
|
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
|
|
- int k = 4)
|
|
|
- : type(type), ne(ne), k(k) {}
|
|
|
+ int k = 4, bool ties = false)
|
|
|
+ : type(type), ne(ne), k(k), ties(ties) {}
|
|
|
|
|
|
double max_err() override {
|
|
|
return 0.0;
|
|
|
}
|
|
|
|
|
|
+ // When there are ties, only validate the final result.
|
|
|
+ // The logic in err can't handle the sentinel tensors.
|
|
|
+ bool run_whole_graph() override { return ties; }
|
|
|
+
|
|
|
double err(const float * a, const float * b, size_t n) override {
|
|
|
- std::vector<int32_t> ia(n);
|
|
|
- std::vector<int32_t> ib(n);
|
|
|
+ // When there are no ties, we expect the exact same set of indices,
|
|
|
+ // but possibly in a different order. When there are ties, the indices
|
|
|
+ // can be different but the input values they correspond to should be
|
|
|
+ // the same. The logic for ties could work for non-ties, but only for
|
|
|
+ // the output tensor, not for the sentinel tensors.
|
|
|
+ if (ties) {
|
|
|
+ std::vector<float> src(ggml_nelements(input));
|
|
|
+
|
|
|
+ ggml_backend_tensor_get(input, src.data(), 0, ggml_nelements(input) * ggml_type_size(type));
|
|
|
+
|
|
|
+ double diff = 0.0f;
|
|
|
+
|
|
|
+ GGML_ASSERT(n == (size_t)(ggml_nrows(input) * k));
|
|
|
+ int64_t cols = input->ne[0];
|
|
|
+ std::vector<int32_t> ia(k);
|
|
|
+ std::vector<int32_t> ib(k);
|
|
|
+ std::vector<float> asrc(k);
|
|
|
+ std::vector<float> bsrc(k);
|
|
|
+ for (int64_t r = 0; r < ggml_nrows(input); r++) {
|
|
|
+ // Convert indices for the row back to integer
|
|
|
+ for (int64_t c = 0; c < k; c++) {
|
|
|
+ ia[c] = (int32_t)a[r * k + c];
|
|
|
+ ib[c] = (int32_t)b[r * k + c];
|
|
|
+ }
|
|
|
+ // The src values for each row should match.
|
|
|
+ for (int64_t c = 0; c < k; c++) {
|
|
|
+ asrc[c] = src[r * cols + ia[c]];
|
|
|
+ bsrc[c] = src[r * cols + ib[c]];
|
|
|
+ }
|
|
|
+ diff += jdst(asrc.data(), bsrc.data(), k);
|
|
|
+ // There should be no duplicate indices
|
|
|
+ std::sort(ia.begin(), ia.end());
|
|
|
+ std::sort(ib.begin(), ib.end());
|
|
|
+ if (std::adjacent_find(ia.begin(), ia.end()) != ia.end()) {
|
|
|
+ diff += 1;
|
|
|
+ }
|
|
|
+ if (std::adjacent_find(ib.begin(), ib.end()) != ib.end()) {
|
|
|
+ diff += 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return diff;
|
|
|
+ } else {
|
|
|
+ std::vector<int32_t> ia(n);
|
|
|
+ std::vector<int32_t> ib(n);
|
|
|
|
|
|
- double diff = 0.0f;
|
|
|
+ double diff = 0.0f;
|
|
|
|
|
|
- for (size_t i = 0; i < n; i++) {
|
|
|
- ia[i] = (int32_t) a[i];
|
|
|
- ib[i] = (int32_t) b[i];
|
|
|
+ for (size_t i = 0; i < n; i++) {
|
|
|
+ ia[i] = (int32_t) a[i];
|
|
|
+ ib[i] = (int32_t) b[i];
|
|
|
|
|
|
- // penalize the result if the data is not integer valued
|
|
|
- diff += std::fabs(a[i] - ia[i]);
|
|
|
- diff += std::fabs(b[i] - ib[i]);
|
|
|
- }
|
|
|
+ // penalize the result if the data is not integer valued
|
|
|
+ diff += std::fabs(a[i] - ia[i]);
|
|
|
+ diff += std::fabs(b[i] - ib[i]);
|
|
|
+ }
|
|
|
|
|
|
- return diff + jdst(ia.data(), ib.data(), n);
|
|
|
+ return diff + jdst(ia.data(), ib.data(), n);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
+ // Save 'a' for err()
|
|
|
+ input = a;
|
|
|
+
|
|
|
ggml_tensor * out = ggml_top_k(ctx, a, k);
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
@@ -5047,11 +5100,16 @@ struct test_top_k : public test_case {
|
|
|
std::random_device rd;
|
|
|
std::default_random_engine rng(rd());
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
- // initialize with unique values to avoid ties
|
|
|
+ int tie_denom = std::max(1, std::min(10, k / 2));
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
|
std::vector<float> data(t->ne[0]);
|
|
|
for (int i = 0; i < t->ne[0]; i++) {
|
|
|
- data[i] = i;
|
|
|
+ if (ties) {
|
|
|
+ // integer division to introduce duplicates
|
|
|
+ data[i] = i / tie_denom;
|
|
|
+ } else {
|
|
|
+ data[i] = i;
|
|
|
+ }
|
|
|
}
|
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
|
|
|
@@ -7657,6 +7715,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|
|
if (k <= 1<<i) {
|
|
|
test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
|
|
|
test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
|
|
|
+ test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k, true));
|
|
|
}
|
|
|
}
|
|
|
}
|