|
|
@@ -6486,7 +6486,7 @@ class JaisModel(TextModel):
|
|
|
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
|
|
|
|
|
|
|
|
-@ModelBase.register("Glm4ForCausalLM")
|
|
|
+@ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
|
|
|
class Glm4Model(TextModel):
|
|
|
model_arch = gguf.MODEL_ARCH.GLM4
|
|
|
|
|
|
@@ -6508,7 +6508,8 @@ class Glm4Model(TextModel):
|
|
|
|
|
|
def set_gguf_parameters(self):
|
|
|
super().set_gguf_parameters()
|
|
|
- rope_dim = self.hparams["head_dim"]
|
|
|
+ if (rope_dim := self.hparams.get("head_dim")) is None:
|
|
|
+ rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
|
|
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
|
|
|
rope_scaling = self.hparams.get("rope_scaling") or {}
|
|
|
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
|
|
|
@@ -6516,6 +6517,13 @@ class Glm4Model(TextModel):
|
|
|
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
|
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
|
|
|
|
|
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
+ if name.startswith("model.visual."): # ignore visual part of Glm4v
|
|
|
+ return []
|
|
|
+ elif name.startswith("model.language_model."):
|
|
|
+ name = name.replace("language_model.", "") # for Glm4v
|
|
|
+ return super().modify_tensors(data_torch, name, bid)
|
|
|
+
|
|
|
|
|
|
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
|
|
class ChatGLMModel(TextModel):
|