|
|
@@ -253,13 +253,14 @@ static void init_model(struct my_llama_model * model) {
|
|
|
set_param_model(model);
|
|
|
|
|
|
// measure data size
|
|
|
- struct ggml_allocr * alloc = NULL;
|
|
|
- alloc = ggml_allocr_new_measure(tensor_alignment);
|
|
|
- alloc_model(alloc, model);
|
|
|
+ size_t size = 0;
|
|
|
+ for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
+ size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
|
|
+ }
|
|
|
|
|
|
// allocate data
|
|
|
- model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
|
|
|
- ggml_allocr_free(alloc);
|
|
|
+ struct ggml_allocr * alloc = NULL;
|
|
|
+ model->data.resize(size + tensor_alignment);
|
|
|
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
|
|
alloc_model(alloc, model);
|
|
|
ggml_allocr_free(alloc);
|
|
|
@@ -1094,11 +1095,9 @@ int main(int argc, char ** argv) {
|
|
|
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
|
|
|
|
|
// measure required memory for input tensors
|
|
|
- alloc = ggml_allocr_new_measure(tensor_alignment);
|
|
|
- ggml_allocr_alloc(alloc, tokens_input);
|
|
|
- ggml_allocr_alloc(alloc, target_probs);
|
|
|
- size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
|
|
- ggml_allocr_free(alloc);
|
|
|
+ size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
|
|
+ GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
|
|
+ tensor_alignment;
|
|
|
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
|
|
|
|
|
// allocate input tensors
|