|
|
@@ -179,6 +179,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_COMMAND_R,
|
|
|
LLM_ARCH_DBRX,
|
|
|
LLM_ARCH_OLMO,
|
|
|
+ LLM_ARCH_OLMO_1124,
|
|
|
LLM_ARCH_OLMOE,
|
|
|
LLM_ARCH_OPENELM,
|
|
|
LLM_ARCH_ARCTIC,
|
|
|
@@ -232,6 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
|
|
{ LLM_ARCH_DBRX, "dbrx" },
|
|
|
{ LLM_ARCH_OLMO, "olmo" },
|
|
|
+ { LLM_ARCH_OLMO_1124, "olmo_1124" },
|
|
|
{ LLM_ARCH_OLMOE, "olmoe" },
|
|
|
{ LLM_ARCH_OPENELM, "openelm" },
|
|
|
{ LLM_ARCH_ARCTIC, "arctic" },
|
|
|
@@ -1207,6 +1209,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
},
|
|
|
},
|
|
|
+ {
|
|
|
+ LLM_ARCH_OLMO_1124,
|
|
|
+ {
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
|
|
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
|
|
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
+ },
|
|
|
+ },
|
|
|
{
|
|
|
LLM_ARCH_OLMOE,
|
|
|
{
|
|
|
@@ -5877,6 +5898,17 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_OLMO_1124:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+
|
|
|
+ switch (hparams.n_layer) {
|
|
|
+ case 16: model.type = e_model::MODEL_1B; break;
|
|
|
+ case 32: model.type = e_model::MODEL_7B; break;
|
|
|
+ case 40: model.type = e_model::MODEL_13B; break;
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_OLMOE:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
@@ -8559,6 +8591,31 @@ static bool llm_load_tensors(
|
|
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_OLMO_1124:
|
|
|
+ {
|
|
|
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ // output
|
|
|
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = model.layers[i];
|
|
|
+
|
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
|
|
|
+ layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
|
+ layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_OLMOE:
|
|
|
{
|
|
|
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
@@ -14424,6 +14481,130 @@ struct llm_build_context {
|
|
|
return gf;
|
|
|
}
|
|
|
|
|
|
+ struct ggml_cgraph * build_olmo_1124() {
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
|
+
|
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ struct ggml_tensor * cur;
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ // self_attention
|
|
|
+ {
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(Qcur, "Qcur_normed", il);
|
|
|
+
|
|
|
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(Kcur, "Kcur_normed", il);
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Qcur, "Qcur_rope", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Kcur, "Kcur_rope", il);
|
|
|
+
|
|
|
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
|
+ model.layers[il].wo, NULL,
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].attn_post_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, il);
|
|
|
+ cb(cur, "attn_post_norm", il);
|
|
|
+
|
|
|
+ if (il == n_layer - 1) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ n_tokens = n_outputs;
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ cur = llm_build_ffn(ctx0, lctx, ffn_inp,
|
|
|
+ model.layers[il].ffn_up, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.layers[il].ffn_post_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
+ cb(cur, "ffn_post_norm", -1);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+
|
|
|
+ return gf;
|
|
|
+ }
|
|
|
+
|
|
|
// based on the build_qwen2moe() function, changes:
|
|
|
// * removed shared experts
|
|
|
// * removed bias
|
|
|
@@ -16616,6 +16797,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
|
result = llm.build_olmo();
|
|
|
} break;
|
|
|
+ case LLM_ARCH_OLMO_1124:
|
|
|
+ {
|
|
|
+ result = llm.build_olmo_1124();
|
|
|
+ } break;
|
|
|
case LLM_ARCH_OLMOE:
|
|
|
{
|
|
|
result = llm.build_olmoe();
|
|
|
@@ -19885,6 +20070,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
case LLM_ARCH_QWEN:
|
|
|
case LLM_ARCH_QWEN2:
|
|
|
case LLM_ARCH_QWEN2MOE:
|
|
|
+ case LLM_ARCH_OLMO_1124:
|
|
|
case LLM_ARCH_OLMOE:
|
|
|
case LLM_ARCH_PHI2:
|
|
|
case LLM_ARCH_PHI3:
|