|
@@ -1,25 +1,9 @@
|
|
|
#include "sumrows.cuh"
|
|
#include "sumrows.cuh"
|
|
|
|
|
|
|
|
-static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
|
|
|
|
- const int row = blockIdx.x;
|
|
|
|
|
- const int col = threadIdx.x;
|
|
|
|
|
-
|
|
|
|
|
- float sum = 0.0f;
|
|
|
|
|
- for (int i = col; i < ncols; i += blockDim.x) {
|
|
|
|
|
- sum += x[row * ncols + i];
|
|
|
|
|
- }
|
|
|
|
|
-
|
|
|
|
|
- sum = warp_reduce_sum(sum);
|
|
|
|
|
-
|
|
|
|
|
- if (col == 0) {
|
|
|
|
|
- dst[row] = sum;
|
|
|
|
|
- }
|
|
|
|
|
-}
|
|
|
|
|
-
|
|
|
|
|
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
|
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
|
|
|
|
|
+ reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
@@ -35,5 +19,8 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t ncols = src0->ne[0];
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
|
|
|
|
- sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
|
|
|
|
|
|
|
+ const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
|
|
|
+ const dim3 block_nums(nrows, 1, 1);
|
|
|
|
|
+
|
|
|
|
|
+ reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
|
|
}
|
|
}
|