|
|
@@ -13,14 +13,37 @@ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Process model with specified path')
|
|
|
parser.add_argument('--model-path', '-m', help='Path to the model')
|
|
|
+parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
+def read_prompt_from_file(file_path):
|
|
|
+ try:
|
|
|
+ with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
+ return f.read().strip()
|
|
|
+ except FileNotFoundError:
|
|
|
+ print(f"Error: Prompts file '{file_path}' not found")
|
|
|
+ exit(1)
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Error reading prompts file: {e}")
|
|
|
+ exit(1)
|
|
|
+
|
|
|
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
|
|
if model_path is None:
|
|
|
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
|
+config = AutoConfig.from_pretrained(model_path)
|
|
|
+
|
|
|
+# This can be used to override the sliding window size for manual testing. This
|
|
|
+# can be useful to verify the sliding window attention mask in the original model
|
|
|
+# and compare it with the converted .gguf model.
|
|
|
+if hasattr(config, 'sliding_window'):
|
|
|
+ original_sliding_window = config.sliding_window
|
|
|
+ #original_sliding_window = 6
|
|
|
+ print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
|
|
+
|
|
|
+print(f"Using unreleased model: {unreleased_model_name}")
|
|
|
if unreleased_model_name:
|
|
|
model_name_lower = unreleased_model_name.lower()
|
|
|
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
|
|
@@ -29,19 +52,28 @@ if unreleased_model_name:
|
|
|
|
|
|
try:
|
|
|
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
|
|
- model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
|
|
|
+ model = model_class.from_pretrained(model_path, config=config)
|
|
|
except (ImportError, AttributeError) as e:
|
|
|
print(f"Failed to import or load model: {e}")
|
|
|
exit(1)
|
|
|
else:
|
|
|
- model = AutoModel.from_pretrained(model_path)
|
|
|
+ model = AutoModel.from_pretrained(model_path, config=config)
|
|
|
print(f"Model class: {type(model)}")
|
|
|
-#print(f"Model file: {type(model).__module__}")
|
|
|
-config = AutoConfig.from_pretrained(model_path)
|
|
|
+print(f"Model file: {type(model).__module__}")
|
|
|
+
|
|
|
+# Verify the model is using the correct sliding window
|
|
|
+if hasattr(model.config, 'sliding_window'):
|
|
|
+ print(f"Model's sliding_window: {model.config.sliding_window}")
|
|
|
+else:
|
|
|
+ print("Model config does not have sliding_window attribute")
|
|
|
|
|
|
model_name = os.path.basename(model_path)
|
|
|
|
|
|
-texts = [ "Hello world today" ]
|
|
|
+if args.prompts_file:
|
|
|
+ prompt_text = read_prompt_from_file(args.prompts_file)
|
|
|
+ texts = [prompt_text]
|
|
|
+else:
|
|
|
+ texts = ["Hello world today"]
|
|
|
|
|
|
encoded = tokenizer(
|
|
|
texts,
|