Kaynağa Gözat

server: move server-context to its own cpp|h (#17595)

* git mv

* add server-context.h

* add server-context.h

* clean up headers

* cont : cleanup

* also expose server_response_reader (to be used by CLI)

* fix windows build

* decouple server_routes and server_http

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Xuan-Son Nguyen 1 ay önce
ebeveyn
işleme
ab49f094d2

+ 2 - 0
tools/server/CMakeLists.txt

@@ -21,6 +21,8 @@ set(TARGET_SRCS
     server-queue.h
     server-common.cpp
     server-common.h
+    server-context.cpp
+    server-context.h
 )
 set(PUBLIC_ASSETS
     index.html.gz

+ 3619 - 0
tools/server/server-context.cpp

@@ -0,0 +1,3619 @@
+#include "server-context.h"
+#include "server-common.h"
+#include "server-http.h"
+#include "server-task.h"
+#include "server-queue.h"
+
+#include "arg.h"
+#include "common.h"
+#include "llama.h"
+#include "log.h"
+#include "sampling.h"
+#include "speculative.h"
+#include "mtmd.h"
+#include "mtmd-helper.h"
+
+#include <cstddef>
+#include <cinttypes>
+#include <memory>
+#include <unordered_set>
+
+// fix problem with std::min and std::max
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+#   define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+using json = nlohmann::ordered_json;
+
+constexpr int HTTP_POLLING_SECONDS = 1;
+
+// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
+enum slot_state {
+    SLOT_STATE_IDLE,
+    SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
+    SLOT_STATE_PROCESSING_PROMPT,
+    SLOT_STATE_DONE_PROMPT,
+    SLOT_STATE_GENERATING,
+};
+
+enum server_state {
+    SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
+    SERVER_STATE_READY,          // Server is ready and model is loaded
+};
+
+static bool server_task_type_need_embd(server_task_type task_type) {
+    switch (task_type) {
+        case SERVER_TASK_TYPE_EMBEDDING:
+        case SERVER_TASK_TYPE_RERANK:
+            return true;
+        default:
+            return false;
+    }
+}
+
+static bool server_task_type_need_logits(server_task_type task_type) {
+    switch (task_type) {
+        case SERVER_TASK_TYPE_COMPLETION:
+        case SERVER_TASK_TYPE_INFILL:
+            return true;
+        default:
+            return false;
+    }
+}
+
+struct server_slot {
+    int id;
+
+    llama_batch batch_spec = {};
+
+    // TODO: change to unique_ptrs for consistency:
+    llama_context * ctx = nullptr;
+    llama_context * ctx_dft = nullptr;
+
+    // multimodal
+    mtmd_context * mctx = nullptr;
+
+    common_speculative * spec = nullptr;
+
+    std::unique_ptr<const server_task> task;
+    std::unique_ptr<const server_task> task_prev; // used for debugging
+
+    // used to determine the slot that has been used the longest
+    int64_t t_last_used = -1;
+
+    // generation props
+    int32_t n_ctx       = 0;  // context size per slot
+    int32_t n_keep      = 0;
+    int32_t n_decoded   = 0;
+    int32_t n_remaining = -1;
+    int32_t i_batch     = -1;
+
+    int32_t n_prompt_tokens_cache     = 0;
+    int32_t n_prompt_tokens_processed = 0;
+
+    size_t last_nl_pos = 0;
+
+    std::string  generated_text;
+    llama_tokens generated_tokens;
+
+    common_chat_msg chat_msg;
+
+    std::vector<completion_token_output> generated_token_probs;
+
+    bool has_next_token = true;
+    bool has_new_line   = false;
+    bool truncated      = false;
+
+    stop_type stop;
+
+    std::string stopping_word;
+
+    // state
+    slot_state state = SLOT_STATE_IDLE;
+
+    server_prompt prompt;
+
+    void prompt_save(server_prompt_cache & prompt_cache) const {
+        GGML_ASSERT(prompt.data.size() == 0);
+
+        const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);
+
+        SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
+                (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));
+
+        auto * cur = prompt_cache.alloc(prompt, cur_size);
+        if (cur == nullptr) {
+            return;
+        }
+
+        llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
+    }
+
+    bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
+        bool res = prompt_cache.load(prompt, tokens, ctx, id);
+        if (!res) {
+            SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
+        }
+
+        return res;
+    }
+
+    std::vector<common_adapter_lora_info> lora;
+    int32_t alora_invocation_start = -1;
+
+    // sampling
+    json json_schema;
+
+    struct common_sampler * smpl = nullptr;
+
+    llama_token sampled;
+
+    common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
+    std::vector<std::string> generated_tool_call_ids;
+
+    // stats
+    size_t n_sent_text = 0; // number of sent text character
+
+    int64_t t_start_process_prompt;
+    int64_t t_start_generation;
+
+    double t_prompt_processing; // ms
+    double t_token_generation;  // ms
+
+    std::function<void(int)> callback_on_release;
+
+    // Speculative decoding stats
+    int32_t n_draft_total = 0;      // Total draft tokens generated
+    int32_t n_draft_accepted = 0;   // Draft tokens actually accepted
+
+    void reset() {
+        SLT_DBG(*this, "%s", "\n");
+
+        n_prompt_tokens_cache = 0;
+
+        last_nl_pos    = 0;
+        generated_text = "";
+        has_new_line   = false;
+        truncated      = false;
+        stop           = STOP_TYPE_NONE;
+        stopping_word  = "";
+        n_sent_text    = 0;
+        chat_format    = COMMON_CHAT_FORMAT_CONTENT_ONLY;
+
+        generated_tokens.clear();
+        generated_token_probs.clear();
+        chat_msg = {};
+        json_schema = json();
+        generated_tool_call_ids.clear();
+
+        // clear speculative decoding stats
+        n_draft_total = 0;
+        n_draft_accepted = 0;
+
+        task.reset();
+        task_prev.reset();
+
+        // clear alora start
+        alora_invocation_start = -1;
+    }
+
+    bool need_embd() const {
+        GGML_ASSERT(task);
+
+        return server_task_type_need_embd(task->type);
+    }
+
+    bool need_logits() const {
+        GGML_ASSERT(task);
+
+        return server_task_type_need_logits(task->type);
+    }
+
+    // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
+    // also we cannot split if the pooling would require any past tokens
+    bool can_split() const {
+        return
+            !need_embd() ||
+            (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
+    }
+
+    bool can_batch_with(server_slot & other_slot) const {
+        GGML_ASSERT(task);
+
+        return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
+    }
+
+    bool has_budget(const common_params & global_params) {
+        GGML_ASSERT(task);
+
+        if (task->params.n_predict == -1 && global_params.n_predict == -1) {
+            return true; // limitless
+        }
+
+        n_remaining = -1;
+
+        if (task->params.n_predict != -1) {
+            n_remaining = task->params.n_predict - n_decoded;
+        } else if (global_params.n_predict != -1) {
+            n_remaining = global_params.n_predict - n_decoded;
+        }
+
+        return n_remaining > 0; // no budget
+    }
+
+    bool is_processing() const {
+        return state != SLOT_STATE_IDLE;
+    }
+
+    bool can_speculate() const {
+        return ctx_dft;
+    }
+
+    void add_token(const completion_token_output & token) {
+        if (!is_processing()) {
+            SLT_WRN(*this, "%s", "slot is not processing\n");
+            return;
+        }
+        generated_token_probs.push_back(token);
+    }
+
+    void release() {
+        if (is_processing()) {
+            GGML_ASSERT(task);
+
+            SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);
+
+            t_last_used = ggml_time_us();
+            t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
+            state = SLOT_STATE_IDLE;
+
+            task_prev = std::move(task);
+            task.reset();
+
+            callback_on_release(id);
+        }
+    }
+
+    result_timings get_timings() const {
+        result_timings timings;
+        timings.cache_n = n_prompt_tokens_cache;
+
+        timings.prompt_n            = n_prompt_tokens_processed;
+        timings.prompt_ms           = t_prompt_processing;
+        timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
+        timings.prompt_per_second   = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
+
+        timings.predicted_n            = n_decoded;
+        timings.predicted_ms           = t_token_generation;
+        timings.predicted_per_token_ms = t_token_generation / n_decoded;
+        timings.predicted_per_second   = 1e3 / t_token_generation * n_decoded;
+
+        // Add speculative metrics
+        if (n_draft_total > 0) {
+            timings.draft_n          = n_draft_total;
+            timings.draft_n_accepted = n_draft_accepted;
+        }
+
+        return timings;
+    }
+
+    const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
+        GGML_ASSERT(task);
+
+        auto previous_msg = chat_msg;
+        SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
+        auto new_msg = common_chat_parse(
+            generated_text,
+            /* is_partial= */ stop != STOP_TYPE_EOS,
+            task->params.oaicompat_chat_syntax);
+        if (!new_msg.empty()) {
+            new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
+            chat_msg = new_msg;
+            diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
+        }
+        return chat_msg;
+    }
+
+    size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
+        GGML_ASSERT(task);
+
+        size_t stop_pos = std::string::npos;
+
+        for (const std::string & word : task->params.antiprompt) {
+            size_t pos;
+
+            if (is_full_stop) {
+                const size_t tmp      = word.size() + last_token_size;
+                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
+
+                pos = text.find(word, from_pos);
+            } else {
+                // otherwise, partial stop
+                pos = string_find_partial_stop(text, word);
+            }
+
+            if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
+                if (is_full_stop) {
+                    stop           = STOP_TYPE_WORD;
+                    stopping_word  = word;
+                    has_next_token = false;
+                }
+                stop_pos = pos;
+            }
+        }
+
+        return stop_pos;
+    }
+
+    void print_timings() const {
+        const double t_prompt        =       t_prompt_processing / n_prompt_tokens_processed;
+        const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
+
+        const double t_gen        =       t_token_generation / n_decoded;
+        const double n_gen_second = 1e3 / t_token_generation * n_decoded;
+
+        SLT_INF(*this,
+                "\n"
+                "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
+                "       eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
+                "      total time = %10.2f ms / %5d tokens\n",
+                t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
+                t_token_generation, n_decoded, t_gen, n_gen_second,
+                t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
+
+        if (n_draft_total > 0) {
+            const float draft_ratio = (float) n_draft_accepted / n_draft_total;
+            SLT_INF(*this,
+                    "\n"
+                    "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
+                    draft_ratio, n_draft_accepted, n_draft_total
+            );
+        }
+    }
+
+    json to_json(bool only_metrics = false) const {
+        json res;
+
+        res = {
+            {"id",            id},
+            {"n_ctx",         n_ctx},
+            {"speculative",   can_speculate()},
+            {"is_processing", is_processing()},
+        };
+
+        const auto & ptask = task ? task : task_prev;
+
+        if (ptask) {
+            res["id_task"] = ptask->id;
+            res["params"] = ptask->params.to_json(only_metrics);
+            res["next_token"] = {
+                {
+                    {"has_next_token", has_next_token},
+                    {"has_new_line",   has_new_line},
+                    {"n_remain",       n_remaining},
+                    {"n_decoded",      n_decoded},
+                }
+            };
+
+            if (!only_metrics) {
+                res["prompt"] = ptask->tokens.detokenize(ctx, true);
+                res["generated"] = generated_text;
+            }
+        }
+
+        return res;
+    }
+};
+
+
+
+//
+// server_metrics
+//
+
+struct server_metrics {
+    int64_t t_start = 0;
+
+    uint64_t n_prompt_tokens_processed_total = 0;
+    uint64_t t_prompt_processing_total       = 0;
+    uint64_t n_tokens_predicted_total        = 0;
+    uint64_t t_tokens_generation_total       = 0;
+
+    uint64_t n_tokens_max = 0;
+
+    uint64_t n_prompt_tokens_processed = 0;
+    uint64_t t_prompt_processing       = 0;
+
+    uint64_t n_tokens_predicted  = 0;
+    uint64_t t_tokens_generation = 0;
+
+    uint64_t n_decode_total     = 0;
+    uint64_t n_busy_slots_total = 0;
+
+    void init() {
+        t_start = ggml_time_us();
+    }
+
+    void on_prompt_eval(const server_slot & slot) {
+        n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
+        n_prompt_tokens_processed       += slot.n_prompt_tokens_processed;
+        t_prompt_processing             += slot.t_prompt_processing;
+        t_prompt_processing_total       += slot.t_prompt_processing;
+
+        n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
+    }
+
+    void on_prediction(const server_slot & slot) {
+        n_tokens_predicted_total   += slot.n_decoded;
+        n_tokens_predicted         += slot.n_decoded;
+        t_tokens_generation        += slot.t_token_generation;
+        t_tokens_generation_total  += slot.t_token_generation;
+    }
+
+    void on_decoded(const std::vector<server_slot> & slots) {
+        n_decode_total++;
+        for (const auto & slot : slots) {
+            if (slot.is_processing()) {
+                n_busy_slots_total++;
+            }
+            n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
+        }
+    }
+
+    void reset_bucket() {
+        n_prompt_tokens_processed = 0;
+        t_prompt_processing       = 0;
+        n_tokens_predicted        = 0;
+        t_tokens_generation       = 0;
+    }
+};
+
+
+//
+// server_context_impl (private implementation)
+//
+
+struct server_context_impl {
+    common_params params_base;
+
+    // note: keep these alive - they determine the lifetime of the model, context, etc.
+    common_init_result llama_init;
+    common_init_result llama_init_dft;
+
+    llama_model * model = nullptr;
+    llama_context * ctx = nullptr;
+
+    // multimodal
+    mtmd_context * mctx = nullptr;
+
+    const llama_vocab * vocab = nullptr;
+    bool vocab_dft_compatible = true;
+
+    llama_model * model_dft = nullptr;
+
+    llama_context_params cparams_dft;
+
+    llama_batch batch {};
+
+    bool add_bos_token  = true;
+
+    int32_t n_ctx; // total context for all clients / slots
+
+    // slots / clients
+    std::vector<server_slot> slots;
+
+    int slots_debug = 0;
+
+    server_queue    queue_tasks;
+    server_response queue_results;
+
+    std::unique_ptr<server_prompt_cache> prompt_cache;
+
+    server_metrics metrics;
+
+    // Necessary similarity of prompt for slot selection
+    float slot_prompt_similarity = 0.0f;
+
+    common_chat_templates_ptr chat_templates;
+    oaicompat_parser_options  oai_parser_opt;
+
+    ~server_context_impl() {
+        mtmd_free(mctx);
+
+        // Clear any sampling context
+        for (server_slot & slot : slots) {
+            common_sampler_free(slot.smpl);
+            slot.smpl = nullptr;
+
+            llama_free(slot.ctx_dft);
+            slot.ctx_dft = nullptr;
+
+            common_speculative_free(slot.spec);
+            slot.spec = nullptr;
+
+            llama_batch_free(slot.batch_spec);
+        }
+
+        llama_batch_free(batch);
+    }
+
+    // load the model and initialize llama_context
+    bool load_model(const common_params & params) {
+        SRV_INF("loading model '%s'\n", params.model.path.c_str());
+
+        params_base = params;
+
+        llama_init = common_init_from_params(params_base);
+
+        model = llama_init.model.get();
+        ctx   = llama_init.context.get();
+
+        if (model == nullptr) {
+            SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
+            return false;
+        }
+
+        vocab = llama_model_get_vocab(model);
+
+        n_ctx = llama_n_ctx(ctx);
+
+        add_bos_token = llama_vocab_get_add_bos(vocab);
+
+        if (params_base.has_speculative()) {
+            SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
+
+            auto params_dft = params_base;
+
+            params_dft.devices      = params_base.speculative.devices;
+            params_dft.model        = params_base.speculative.model;
+            params_dft.n_ctx        = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
+            params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
+            params_dft.n_parallel   = 1;
+            params_dft.cache_type_k = params_base.speculative.cache_type_k;
+            params_dft.cache_type_v = params_base.speculative.cache_type_v;
+
+            params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
+            params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
+            params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
+
+            llama_init_dft = common_init_from_params(params_dft);
+
+            model_dft = llama_init_dft.model.get();
+
+            if (model_dft == nullptr) {
+                SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
+                return false;
+            }
+
+            vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
+            if (!vocab_dft_compatible) {
+                SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
+            }
+
+            const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
+
+            cparams_dft = common_context_params_to_llama(params_dft);
+            cparams_dft.n_batch = n_ctx_dft;
+
+            // the context is not needed - we will create one for each slot
+            llama_init_dft.context.reset();
+        }
+
+        chat_templates = common_chat_templates_init(model, params_base.chat_template);
+        try {
+            common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
+        } catch (const std::exception & e) {
+            SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
+            SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
+            chat_templates = common_chat_templates_init(model, "chatml");
+        }
+
+        std::string & mmproj_path = params_base.mmproj.path;
+        if (!mmproj_path.empty()) {
+            mtmd_helper_log_set(common_log_default_callback, nullptr);
+
+            mtmd_context_params mparams = mtmd_context_params_default();
+            mparams.use_gpu          = params_base.mmproj_use_gpu;
+            mparams.print_timings    = false;
+            mparams.n_threads        = params_base.cpuparams.n_threads;
+            mparams.flash_attn_type  = params_base.flash_attn_type;
+            mparams.image_min_tokens = params_base.image_min_tokens;
+            mparams.image_max_tokens = params_base.image_max_tokens;
+            mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
+            if (mctx == nullptr) {
+                SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
+                return false;
+            }
+            SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
+
+            if (params_base.ctx_shift) {
+                params_base.ctx_shift = false;
+                SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
+            }
+
+            if (params_base.n_cache_reuse) {
+                params_base.n_cache_reuse = 0;
+                SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
+            }
+
+            if (params_base.has_speculative()) {
+                SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
+                return false;
+            }
+        }
+
+        if (!llama_memory_can_shift(llama_get_memory(ctx))) {
+            if (params_base.ctx_shift) {
+                params_base.ctx_shift = false;
+                SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
+            }
+
+            if (params_base.n_cache_reuse) {
+                params_base.n_cache_reuse = 0;
+                SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
+            }
+        }
+
+        return true;
+    }
+
+    // initialize slots and server-related data
+    void init() {
+        // wiring up server queues
+        queue_tasks.on_new_task([this](server_task && task) {
+            process_single_task(std::move(task));
+        });
+        queue_tasks.on_update_slots([this]() {
+            update_slots();
+        });
+
+        // Necessary similarity of prompt for slot selection
+        slot_prompt_similarity = params_base.slot_prompt_similarity;
+
+        // setup slots
+        SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
+
+        const int n_ctx_train = llama_model_n_ctx_train(model);
+
+        int n_ctx_slot = llama_n_ctx_seq(ctx);
+        if (n_ctx_slot > n_ctx_train) {
+            SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
+            n_ctx_slot = n_ctx_train;
+        }
+
+        for (int i = 0; i < params_base.n_parallel; i++) {
+            server_slot slot;
+
+            slot.id = i;
+            slot.ctx = ctx;
+            slot.n_ctx = n_ctx_slot;
+            slot.mctx = mctx;
+            slot.prompt.tokens.has_mtmd = mctx != nullptr;
+
+            if (model_dft) {
+                slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
+
+                // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
+                slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
+                if (slot.ctx_dft == nullptr) {
+                    SRV_ERR("%s", "failed to create draft context\n");
+                    return;
+                }
+
+                slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
+                if (slot.spec == nullptr) {
+                    SRV_ERR("%s", "failed to create speculator\n");
+                    return;
+                }
+                for (auto & pair : params_base.speculative.replacements) {
+                    common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
+                }
+            }
+
+            SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
+
+            slot.callback_on_release = [this](int) {
+                queue_tasks.pop_deferred_task();
+            };
+
+            slot.reset();
+
+            slots.push_back(std::move(slot));
+        }
+
+        {
+            const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
+            slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;
+
+            if (slots_debug) {
+                SRV_WRN("slots debug = %d\n", slots_debug);
+            }
+        }
+
+        // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
+        // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
+        {
+            const int32_t n_batch = llama_n_batch(ctx);
+            batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
+        }
+
+        metrics.init();
+
+        if (params_base.cache_ram_mib != 0) {
+            if (params_base.cache_ram_mib < 0) {
+                SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
+            } else {
+                SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
+            }
+            SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");
+
+            prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
+        } else {
+            SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
+        }
+        SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");
+
+        // thinking is enabled if:
+        // 1. It's not explicitly disabled (reasoning_budget == 0)
+        // 2. The chat template supports it
+        const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
+        SRV_INF("thinking = %d\n", enable_thinking);
+
+        oai_parser_opt = {
+            /* use_jinja             */ params_base.use_jinja,
+            /* prefill_assistant     */ params_base.prefill_assistant,
+            /* reasoning_format      */ params_base.reasoning_format,
+            /* chat_template_kwargs  */ params_base.default_template_kwargs,
+            /* common_chat_templates */ chat_templates.get(),
+            /* allow_image           */ mctx ? mtmd_support_vision(mctx) : false,
+            /* allow_audio           */ mctx ? mtmd_support_audio (mctx) : false,
+            /* enable_thinking       */ enable_thinking,
+        };
+
+        // print sample chat example to make it clear which template is used
+        LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
+            common_chat_templates_source(chat_templates.get()),
+            common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
+    }
+
+    server_slot * get_slot_by_id(int id) {
+        for (server_slot & slot : slots) {
+            if (slot.id == id) {
+                return &slot;
+            }
+        }
+
+        return nullptr;
+    }
+
+    server_slot * get_available_slot(const server_task & task) {
+        server_slot * ret = nullptr;
+
+        bool update_cache = false;
+
+        // find the slot that has at least n% prompt similarity
+        if (ret == nullptr && slot_prompt_similarity != 0.0f) {
+            float sim_best = 0;
+
+            for (server_slot & slot : slots) {
+                // skip the slot if it is not available
+                if (slot.is_processing()) {
+                    continue;
+                }
+
+                const auto & tokens = slot.prompt.tokens;
+
+                // skip the slot if it does not contains cached tokens
+                if (tokens.empty()) {
+                    continue;
+                }
+
+                // fraction of the Longest Common Prefix length with respect to the input prompt length
+                const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();
+
+                // select the current slot if the criteria match
+                if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
+                    sim_best = sim_cur;
+
+                    ret = &slot;
+                }
+            }
+
+            if (ret != nullptr) {
+                const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();
+
+                SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
+                        sim_best, slot_prompt_similarity, f_keep);
+
+                // if we are about to lose a large portion of the existing context - save it in the prompt cache
+                if (f_keep < 0.5f) {
+                    update_cache = true;
+                }
+            }
+        }
+
+        // find the slot that has been least recently used
+        if (ret == nullptr) {
+            int64_t t_last = -1;
+
+            for (server_slot & slot : slots) {
+                // skip the slot if it is not available
+                if (slot.is_processing()) {
+                    continue;
+                }
+
+                // select the current slot if the criteria match
+                if (!ret || slot.t_last_used <= t_last) {
+                    t_last = slot.t_last_used;
+                    ret = &slot;
+                }
+            }
+
+            if (ret != nullptr) {
+                SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
+
+                update_cache = true;
+            }
+        }
+
+        if (ret) {
+            const auto & tokens = ret->prompt.tokens;
+
+            update_cache = update_cache && prompt_cache;
+
+            // cache prompts only for completion tasks
+            update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;
+
+            // don't update the cache if the slot's context is empty
+            update_cache = update_cache && tokens.size() > 0;
+
+            // TODO: mtmd does not support prompt cache
+            update_cache = update_cache && (ret->mctx == nullptr);
+
+            if (update_cache) {
+                SRV_WRN("%s", "updating prompt cache\n");
+
+                const int64_t t_start = ggml_time_us();
+
+                ret->prompt_save(*prompt_cache);
+
+                if (!ret->prompt_load(*prompt_cache, task.tokens)) {
+                    clear_slot(*ret);
+                }
+
+                prompt_cache->update();
+
+                SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
+            }
+        }
+
+        return ret;
+    }
+
+    void clear_slot(server_slot & slot) const {
+        GGML_ASSERT(!slot.is_processing());
+
+        SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size());
+
+        llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
+        slot.prompt.tokens.clear();
+    }
+
+    // return true if at least one slot has been cleared
+    // TODO: improve logic
+    //       - smarter decision which slot to clear (LRU or longest prompt?)
+    //       - move slot to level 2 cache instead of removing?
+    //       - instead of purging, try to store and resume later?
+    bool try_clear_idle_slots() {
+        bool res = false;
+
+        if (!params_base.kv_unified) {
+            return res;
+        }
+
+        for (auto & slot : slots) {
+            if (slot.is_processing()) {
+                continue;
+            }
+
+            if (slot.prompt.n_tokens() > 0) {
+                SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());
+
+                clear_slot(slot);
+
+                res = true;
+
+                // clear slots one by one
+                break;
+            }
+        }
+
+        return res;
+    }
+
+    bool launch_slot_with_task(server_slot & slot, server_task && task) {
+        slot.reset();
+
+        if (!are_lora_equal(task.params.lora, slot.lora)) {
+            // if lora has changed, check to see if the cache should be cleared
+            if (lora_should_clear_cache(slot.lora, task.params.lora)) {
+                SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
+                slot.prompt.tokens.clear();
+            } else {
+                SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size());
+            }
+            slot.lora = task.params.lora;
+        }
+
+        // if using alora, make sure it's only a single one requested and active
+        size_t alora_invocation_start = task.tokens.size();
+        if (lora_all_alora(slot.lora)) {
+            const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
+            // TODO: This will error out if a user requests two aloras, but only
+            // provides the activation string for one. We could, instead search
+            // for all requested alora activation strings and then either keep
+            // only the last one, or reject if multiple are found.
+            if (enabled_ids.size() != 1) {
+                send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
+                return false;
+            }
+            const auto & lora = slot.lora[enabled_ids[0]].ptr;
+
+            // get the pointer and count for the invocation tokens
+            const uint64_t      n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
+            const llama_token * invocation_tokens   = llama_adapter_get_alora_invocation_tokens  (lora);
+
+            // scan backwards through the prompt tokens to find the last
+            // occurrence of the invocation sequence
+            int match_idx = static_cast<int>(n_invocation_tokens) - 1;
+            for (int i = task.tokens.size() - 1; i >= 0; --i) {
+                // the token in this position matches the next token to find in
+                // the invocation sequence
+                if (task.tokens[i] == invocation_tokens[match_idx]) {
+                    // if it's a full match, we've found the start
+                    if (match_idx == 0) {
+                        alora_invocation_start = i;
+                        break;
+                    }
+                    // otherwise, check the next token in the sequence
+                    --match_idx;
+                } else {
+                    // no match in this position, so start looking over again
+                    match_idx = static_cast<int>(n_invocation_tokens) - 1;
+                }
+            }
+
+            // if the activation string is not found, disable the alora
+            if (alora_invocation_start == task.tokens.size()) {
+                SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
+                slot.lora[enabled_ids[0]].scale = 0.0f;
+            } else {
+                SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
+                slot.alora_invocation_start = alora_invocation_start;
+            }
+        }
+
+        if (!task.tokens.validate(ctx)) {
+            send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
+            return false;
+        }
+
+        SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
+
+        // initialize samplers
+        {
+            if (slot.smpl != nullptr) {
+                common_sampler_free(slot.smpl);
+            }
+
+            slot.smpl = common_sampler_init(model, task.params.sampling);
+            if (slot.smpl == nullptr) {
+                // for now, the only error that may happen here is invalid grammar
+                send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
+                return false;
+            }
+
+            SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str());
+        }
+
+        // initialize draft batch
+        // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
+        if (slot.ctx_dft) {
+            llama_batch_free(slot.batch_spec);
+
+            slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
+        }
+
+        slot.task = std::make_unique<const server_task>(std::move(task));
+
+        slot.state = SLOT_STATE_STARTED;
+
+        SLT_INF(slot, "%s", "processing task\n");
+
+        return true;
+    }
+
+    bool process_token(completion_token_output & result, server_slot & slot) {
+        // remember which tokens were sampled - used for repetition penalties during sampling
+        const std::string token_str = result.text_to_send;
+        slot.sampled = result.tok;
+
+        slot.generated_text += token_str;
+        if (slot.task->params.return_tokens) {
+            slot.generated_tokens.push_back(result.tok);
+        }
+        slot.has_next_token = true;
+
+        // check if there is incomplete UTF-8 character at the end
+        bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
+
+        // search stop word and delete it
+        if (!incomplete) {
+            size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
+
+            const std::string str_test = slot.generated_text.substr(pos);
+            bool send_text = true;
+
+            size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
+            if (stop_pos != std::string::npos) {
+                slot.generated_text.erase(
+                    slot.generated_text.begin() + pos + stop_pos,
+                    slot.generated_text.end());
+                pos = std::min(slot.n_sent_text, slot.generated_text.size());
+            } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
+                stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
+                send_text = stop_pos == std::string::npos;
+            }
+
+            // check if there is any token to predict
+            if (send_text) {
+                // no send the stop word in the response
+                result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
+                slot.n_sent_text += result.text_to_send.size();
+                // add the token to slot queue and cache
+            } else {
+                result.text_to_send = "";
+            }
+
+            slot.add_token(result);
+            if (slot.task->params.stream) {
+                send_partial_response(slot, result, false);
+            }
+        }
+
+        if (incomplete) {
+            slot.has_next_token = true;
+        }
+
+        // if context shifting is disabled, make sure that we don't run out of context
+        if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
+            slot.truncated      = true;
+            slot.stop           = STOP_TYPE_LIMIT;
+            slot.has_next_token = false;
+
+            SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
+                    slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
+        }
+
+        // check the limits
+        if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
+            slot.stop           = STOP_TYPE_LIMIT;
+            slot.has_next_token = false;
+
+            SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
+        }
+
+        if (slot.has_new_line) {
+            // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
+            if (slot.task->params.n_indent > 0) {
+                // check the current indentation
+                // TODO: improve by not doing it more than once for each new line
+                if (slot.last_nl_pos > 0) {
+                    size_t pos = slot.last_nl_pos;
+
+                    int n_indent = 0;
+                    while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
+                        n_indent++;
+                        pos++;
+                    }
+
+                    if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
+                        slot.stop           = STOP_TYPE_LIMIT;
+                        slot.has_next_token = false;
+
+                        // cut the last line
+                        slot.generated_text.erase(pos, std::string::npos);
+
+                        SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
+                    }
+                }
+
+                // find the next new line
+                {
+                    const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
+
+                    if (pos != std::string::npos) {
+                        slot.last_nl_pos = pos + 1;
+                    }
+                }
+            }
+        }
+
+        // check if there is a new line in the generated text
+        if (result.text_to_send.find('\n') != std::string::npos) {
+            slot.has_new_line = true;
+
+            // if we have seen a new line, we stop after a certain time limit, but only upon another new line
+            if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
+                slot.stop           = STOP_TYPE_LIMIT;
+                slot.has_next_token = false;
+
+                SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
+            }
+        }
+
+        if (llama_vocab_is_eog(vocab, result.tok)) {
+            slot.stop           = STOP_TYPE_EOS;
+            slot.has_next_token = false;
+
+            SLT_DBG(slot, "%s", "stopped by EOS\n");
+        }
+
+        SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
+
+        return slot.has_next_token; // continue
+    }
+
+    void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
+        size_t n_probs = slot.task->params.sampling.n_probs;
+        size_t n_vocab = llama_vocab_n_tokens(vocab);
+
+        if (post_sampling) {
+            const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
+            const size_t max_probs = cur_p->size;
+
+            // set probability for sampled token
+            for (size_t i = 0; i < max_probs; i++) {
+                if (cur_p->data[i].id == result.tok) {
+                    result.prob = cur_p->data[i].p;
+                    break;
+                }
+            }
+
+            // set probability for top n_probs tokens
+            result.probs.reserve(max_probs);
+            for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
+                result.probs.push_back({
+                    cur_p->data[i].id,
+                    common_token_to_piece(ctx, cur_p->data[i].id, special),
+                    cur_p->data[i].p
+                });
+            }
+        } else {
+            // TODO: optimize this with min-p optimization
+            std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
+
+            // set probability for sampled token
+            for (size_t i = 0; i < n_vocab; i++) {
+                // set probability for sampled token
+                if (cur[i].id == result.tok) {
+                    result.prob = cur[i].p;
+                    break;
+                }
+            }
+
+            // set probability for top n_probs tokens
+            result.probs.reserve(n_probs);
+            for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
+                result.probs.push_back({
+                    cur[i].id,
+                    common_token_to_piece(ctx, cur[i].id, special),
+                    cur[i].p
+                });
+            }
+        }
+    }
+
+    void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
+        send_error(task.id, error, type);
+    }
+
+    void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
+        send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
+    }
+
+    void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
+        SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
+
+        if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
+            GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
+        }
+
+        auto res = std::make_unique<server_task_result_error>();
+        res->id              = id_task;
+        res->err_type        = type;
+        res->err_msg         = error;
+        res->n_prompt_tokens = n_prompt_tokens;
+        res->n_ctx           = n_ctx;
+
+        queue_results.send(std::move(res));
+    }
+
+    // if multimodal is enabled, send an error and return false
+    bool check_no_mtmd(const int id_task) {
+        if (mctx) {
+            send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
+            return false;
+        }
+        return true;
+    }
+
+    void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
+        auto res = std::make_unique<server_task_result_cmpl_partial>();
+
+        res->id    = slot.task->id;
+        res->index = slot.task->index;
+
+        if (is_progress) {
+            res->is_progress        = true;
+            res->progress.total     = slot.task->n_tokens();
+            res->progress.cache     = slot.n_prompt_tokens_cache;
+            res->progress.processed = slot.prompt.tokens.size();
+            res->progress.time_ms   = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
+        } else {
+            res->content = tkn.text_to_send;
+            res->tokens  = { tkn.tok };
+
+            slot.update_chat_msg(res->oaicompat_msg_diffs);
+        }
+
+        res->n_decoded           = slot.n_decoded;
+        res->n_prompt_tokens     = slot.task->n_tokens();
+        res->post_sampling_probs = slot.task->params.post_sampling_probs;
+
+        res->verbose           = slot.task->params.verbose;
+        res->res_type          = slot.task->params.res_type;
+        res->oaicompat_model   = slot.task->params.oaicompat_model;
+        res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
+
+        // populate res.probs_output
+        if (slot.task->params.sampling.n_probs > 0) {
+            res->prob_output = tkn; // copy the token probs
+        }
+
+        // populate timings if this is final response or timings_per_token is enabled
+        if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
+            res->timings = slot.get_timings();
+        }
+
+        queue_results.send(std::move(res));
+    }
+
+    void send_final_response(server_slot & slot) {
+        auto res = std::make_unique<server_task_result_cmpl_final>();
+
+        res->id      = slot.task->id;
+        res->id_slot = slot.id;
+
+        res->index           = slot.task->index;
+        res->content         = slot.generated_text;
+        res->tokens          = std::move(slot.generated_tokens);
+        res->timings         = slot.get_timings();
+        res->prompt          = slot.task->tokens.detokenize(ctx, true);
+        res->response_fields = std::move(slot.task->params.response_fields);
+
+        res->truncated           = slot.truncated;
+        res->n_decoded           = slot.n_decoded;
+        res->n_prompt_tokens     = slot.task->n_tokens();
+        res->n_tokens_cached     = slot.prompt.n_tokens();
+        res->has_new_line        = slot.has_new_line;
+        res->stopping_word       = slot.stopping_word;
+        res->stop                = slot.stop;
+        res->post_sampling_probs = slot.task->params.post_sampling_probs;
+
+        res->verbose           = slot.task->params.verbose;
+        res->stream            = slot.task->params.stream;
+        res->include_usage     = slot.task->params.include_usage;
+        res->res_type          = slot.task->params.res_type;
+        res->oaicompat_model   = slot.task->params.oaicompat_model;
+        res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
+        res->oaicompat_msg     = slot.update_chat_msg(res->oaicompat_msg_diffs);
+
+        // populate res.probs_output
+        if (slot.task->params.sampling.n_probs > 0) {
+            if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
+                const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
+
+                size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
+                res->probs_output = std::vector<completion_token_output>(
+                        slot.generated_token_probs.begin(),
+                        slot.generated_token_probs.end() - safe_offset);
+            } else {
+                res->probs_output = std::vector<completion_token_output>(
+                        slot.generated_token_probs.begin(),
+                        slot.generated_token_probs.end());
+            }
+        }
+
+        res->generation_params = slot.task->params; // copy the parameters
+
+        queue_results.send(std::move(res));
+    }
+
+    void send_embedding(const server_slot & slot, const llama_batch & batch) {
+        auto res = std::make_unique<server_task_result_embd>();
+        res->id        = slot.task->id;
+        res->index     = slot.task->index;
+        res->n_tokens  = slot.task->n_tokens();
+        res->res_type  = slot.task->params.res_type;
+
+        const int n_embd = llama_model_n_embd(model);
+
+        std::vector<float> embd_res(n_embd, 0.0f);
+
+        for (int i = 0; i < batch.n_tokens; ++i) {
+            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
+                continue;
+            }
+
+            const float * embd = nullptr;
+            if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
+                embd = llama_get_embeddings_ith(ctx, i);
+            } else {
+                embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
+            }
+
+            if (embd == nullptr) {
+                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
+
+                res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
+                continue;
+            }
+
+            // normalize only when there is pooling
+            if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
+                common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
+                res->embedding.push_back(embd_res);
+                break;
+            }
+
+            res->embedding.emplace_back(embd, embd + n_embd);
+        }
+
+        SLT_DBG(slot, "%s", "sending embeddings\n");
+
+        queue_results.send(std::move(res));
+    }
+
+    void send_rerank(const server_slot & slot, const llama_batch & batch) {
+        auto res = std::make_unique<server_task_result_rerank>();
+        res->id       = slot.task->id;
+        res->index    = slot.task->index;
+        res->n_tokens = slot.task->n_tokens();
+
+        for (int i = 0; i < batch.n_tokens; ++i) {
+            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
+                continue;
+            }
+
+            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
+            if (embd == NULL) {
+                embd = llama_get_embeddings_ith(ctx, i);
+            }
+
+            if (embd == NULL) {
+                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
+
+                res->score = -1e6;
+                continue;
+            }
+
+            res->score = embd[0];
+        }
+
+        SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
+
+        queue_results.send(std::move(res));
+    }
+
+    //
+    // Functions to process the task
+    //
+
+    void process_single_task(server_task && task) {
+        switch (task.type) {
+            case SERVER_TASK_TYPE_COMPLETION:
+            case SERVER_TASK_TYPE_INFILL:
+            case SERVER_TASK_TYPE_EMBEDDING:
+            case SERVER_TASK_TYPE_RERANK:
+                {
+                    const int id_slot = task.id_slot;
+
+                    server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
+
+                    if (slot == nullptr) {
+                        // if no slot is available, we defer this task for processing later
+                        SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
+                        queue_tasks.defer(std::move(task));
+                        break;
+                    }
+
+                    if (slot->is_processing()) {
+                        // if requested slot is unavailable, we defer this task for processing later
+                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
+                        queue_tasks.defer(std::move(task));
+                        break;
+                    }
+
+                    if (!launch_slot_with_task(*slot, std::move(task))) {
+                        SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
+                        break;
+                    }
+                } break;
+            case SERVER_TASK_TYPE_CANCEL:
+                {
+                    // release slot linked with the task id
+                    for (auto & slot : slots) {
+                        if (slot.task && slot.task->id == task.id_target) {
+                            slot.release();
+                            break;
+                        }
+                    }
+                } break;
+            case SERVER_TASK_TYPE_NEXT_RESPONSE:
+                {
+                    // do nothing
+                } break;
+            case SERVER_TASK_TYPE_METRICS:
+                {
+                    json slots_data = json::array();
+
+                    int n_idle_slots       = 0;
+                    int n_processing_slots = 0;
+
+                    for (server_slot & slot : slots) {
+                        json slot_data = slot.to_json(slots_debug == 0);
+
+                        if (slot.is_processing()) {
+                            n_processing_slots++;
+                        } else {
+                            n_idle_slots++;
+                        }
+
+                        slots_data.push_back(slot_data);
+                    }
+                    SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
+
+                    auto res = std::make_unique<server_task_result_metrics>();
+                    res->id                  = task.id;
+                    res->slots_data          = std::move(slots_data);
+                    res->n_idle_slots        = n_idle_slots;
+                    res->n_processing_slots  = n_processing_slots;
+                    res->n_tasks_deferred    = queue_tasks.queue_tasks_deferred_size();
+                    res->t_start             = metrics.t_start;
+
+                    res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
+                    res->t_prompt_processing_total       = metrics.t_prompt_processing_total;
+                    res->n_tokens_predicted_total        = metrics.n_tokens_predicted_total;
+                    res->t_tokens_generation_total       = metrics.t_tokens_generation_total;
+
+                    res->n_tokens_max = metrics.n_tokens_max;
+
+                    res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
+                    res->t_prompt_processing       = metrics.t_prompt_processing;
+                    res->n_tokens_predicted        = metrics.n_tokens_predicted;
+                    res->t_tokens_generation       = metrics.t_tokens_generation;
+
+                    res->n_decode_total          = metrics.n_decode_total;
+                    res->n_busy_slots_total      = metrics.n_busy_slots_total;
+
+                    if (task.metrics_reset_bucket) {
+                        metrics.reset_bucket();
+                    }
+                    queue_results.send(std::move(res));
+                } break;
+            case SERVER_TASK_TYPE_SLOT_SAVE:
+                {
+                    if (!check_no_mtmd(task.id)) {
+                        break;
+                    }
+
+                    int id_slot = task.slot_action.slot_id;
+                    server_slot * slot = get_slot_by_id(id_slot);
+                    if (slot == nullptr) {
+                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+                        break;
+                    }
+                    if (slot->is_processing()) {
+                        // if requested slot is unavailable, we defer this task for processing later
+                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
+                        queue_tasks.defer(std::move(task));
+                        break;
+                    }
+
+                    const size_t token_count = slot->prompt.tokens.size();
+                    const int64_t t_start = ggml_time_us();
+
+                    std::string filename = task.slot_action.filename;
+                    std::string filepath = task.slot_action.filepath;
+
+                    const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
+                    const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
+
+                    const int64_t t_end = ggml_time_us();
+                    const double t_save_ms = (t_end - t_start) / 1000.0;
+
+                    auto res = std::make_unique<server_task_result_slot_save_load>();
+                    res->id       = task.id;
+                    res->id_slot  = id_slot;
+                    res->filename = filename;
+                    res->is_save  = true;
+                    res->n_tokens = token_count;
+                    res->n_bytes  = nwrite;
+                    res->t_ms     = t_save_ms;
+                    queue_results.send(std::move(res));
+                } break;
+            case SERVER_TASK_TYPE_SLOT_RESTORE:
+                {
+                    if (!check_no_mtmd(task.id)) break;
+                    int id_slot = task.slot_action.slot_id;
+                    server_slot * slot = get_slot_by_id(id_slot);
+                    if (slot == nullptr) {
+                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+                        break;
+                    }
+                    if (slot->is_processing()) {
+                        // if requested slot is unavailable, we defer this task for processing later
+                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
+                        queue_tasks.defer(std::move(task));
+                        break;
+                    }
+
+                    const int64_t t_start = ggml_time_us();
+
+                    std::string filename = task.slot_action.filename;
+                    std::string filepath = task.slot_action.filepath;
+
+                    llama_tokens tokens;
+                    tokens.resize(slot->n_ctx);
+                    size_t token_count = 0;
+                    size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
+                    if (nread == 0) {
+                        slot->prompt.tokens.clear(); // KV may already been invalidated?
+                        send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
+                        break;
+                    }
+                    tokens.resize(token_count);
+                    slot->prompt.tokens.clear();
+                    slot->prompt.tokens.insert(tokens);
+
+                    const int64_t t_end = ggml_time_us();
+                    const double t_restore_ms = (t_end - t_start) / 1000.0;
+
+                    auto res = std::make_unique<server_task_result_slot_save_load>();
+                    res->id       = task.id;
+                    res->id_slot  = id_slot;
+                    res->filename = filename;
+                    res->is_save  = false;
+                    res->n_tokens = token_count;
+                    res->n_bytes  = nread;
+                    res->t_ms     = t_restore_ms;
+                    queue_results.send(std::move(res));
+                } break;
+            case SERVER_TASK_TYPE_SLOT_ERASE:
+                {
+                    if (!check_no_mtmd(task.id)) {
+                        break;
+                    }
+                    int id_slot = task.slot_action.slot_id;
+                    server_slot * slot = get_slot_by_id(id_slot);
+                    if (slot == nullptr) {
+                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+                        break;
+                    }
+                    if (slot->is_processing()) {
+                        // if requested slot is unavailable, we defer this task for processing later
+                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
+                        queue_tasks.defer(std::move(task));
+                        break;
+                    }
+
+                    // Erase token cache
+                    const size_t n_erased = slot->prompt.tokens.size();
+
+                    clear_slot(*slot);
+
+                    auto res = std::make_unique<server_task_result_slot_erase>();
+                    res->id       = task.id;
+                    res->id_slot  = id_slot;
+                    res->n_erased = n_erased;
+                    queue_results.send(std::move(res));
+                } break;
+            case SERVER_TASK_TYPE_SET_LORA:
+                {
+                    params_base.lora_adapters = std::move(task.set_lora);
+                    auto res = std::make_unique<server_task_result_apply_lora>();
+                    res->id = task.id;
+                    queue_results.send(std::move(res));
+                } break;
+
+        }
+    }
+
+    void update_slots() {
+        // check if all slots are idle
+        {
+            bool all_idle = true;
+
+            for (auto & slot : slots) {
+                if (slot.is_processing()) {
+                    all_idle = false;
+                    break;
+                }
+            }
+
+            if (all_idle) {
+                SRV_INF("%s", "all slots are idle\n");
+
+                return;
+            }
+        }
+
+        {
+            SRV_DBG("%s", "posting NEXT_RESPONSE\n");
+
+            server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
+            task.id = queue_tasks.get_new_id();
+            queue_tasks.post(std::move(task));
+        }
+
+        // apply context-shift if needed
+        // TODO: simplify and improve
+        for (server_slot & slot : slots) {
+            if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
+                if (!params_base.ctx_shift) {
+                    // this check is redundant (for good)
+                    // we should never get here, because generation should already stopped in process_token()
+                    send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
+                    slot.release();
+                    continue;
+                }
+
+                if (mctx) {
+                    // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
+                    // we don't support ctx_shift because an image chunk may contains multiple tokens
+                    GGML_ABORT("not supported by multimodal");
+                }
+
+                // Shift context
+                int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
+
+                if (add_bos_token) {
+                    n_keep += 1;
+                }
+
+                n_keep = std::min(slot.n_ctx - 4, n_keep);
+
+                const int n_left    = slot.prompt.n_tokens() - n_keep;
+                const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);
+
+                SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
+
+                llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep            , n_keep + n_discard);
+                llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);
+
+                // add generated tokens to cache
+                // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
+                {
+                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
+
+                    llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
+                    for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
+                        new_tokens[i - n_discard] = new_tokens[i];
+                    }
+
+                    new_tokens.resize(slot.prompt.tokens.size() - n_discard);
+
+                    slot.prompt.tokens.clear();
+                    slot.prompt.tokens.insert(new_tokens);
+                }
+
+                slot.truncated = true;
+            }
+        }
+
+        // start populating the batch for this iteration
+        common_batch_clear(batch);
+
+        // track if given slot can be batched with slots already in the batch
+        server_slot * slot_batched = nullptr;
+
+        auto accept_special_token = [&](server_slot & slot, llama_token token) {
+            return params_base.special ||
+                slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
+        };
+
+        // first, add sampled tokens from any ongoing sequences
+        for (auto & slot : slots) {
+            if (slot.state != SLOT_STATE_GENERATING) {
+                continue;
+            }
+
+            // check if we can batch this slot with the previous one
+            if (!slot_batched) {
+                slot_batched = &slot;
+            } else if (!slot_batched->can_batch_with(slot)) {
+                continue;
+            }
+
+            slot.i_batch = batch.n_tokens;
+
+            common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
+
+            slot.prompt.tokens.push_back(slot.sampled);
+
+            SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
+                    slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
+        }
+
+        // process in chunks of params.n_batch
+        int32_t n_batch  = llama_n_batch(ctx);
+        int32_t n_ubatch = llama_n_ubatch(ctx);
+
+        float  alora_scale       = -1.0f;
+        size_t alora_disabled_id = 0;
+
+        // next, batch any pending prompts without exceeding n_batch
+        if (params_base.cont_batching || batch.n_tokens == 0) {
+            for (auto & slot : slots) {
+                if (!slot.is_processing()) {
+                    continue;
+                }
+
+                // check if we can batch this slot with the previous one
+                if (slot_batched && !slot_batched->can_batch_with(slot)) {
+                    continue;
+                }
+
+                // this slot still has a prompt to be processed
+                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
+                    const auto & input_tokens = slot.task->tokens;
+
+                    // TODO: maybe move branch to outside of this loop in the future
+                    if (slot.state == SLOT_STATE_STARTED) {
+                        slot.t_start_process_prompt = ggml_time_us();
+                        slot.t_start_generation = 0;
+
+                        slot.state = SLOT_STATE_PROCESSING_PROMPT;
+
+                        SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
+                                slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());
+
+                        // print prompt tokens (for debugging)
+                        /*if (1) {
+                            // first 16 tokens (avoid flooding logs)
+                            for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
+                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
+                            }
+                        } else {
+                            // all
+                            for (int i = 0; i < (int) input_tokens.size(); i++) {
+                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
+                            }
+                        }*/
+
+                        // keep track how many tokens we can reuse from the previous state
+                        int n_past = 0;
+
+                        // empty prompt passed -> release the slot and send empty response
+                        if (input_tokens.empty()) {
+                            SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
+
+                            slot.print_timings();
+                            send_final_response(slot);
+                            slot.release();
+
+                            continue;
+                        }
+
+                        // TODO: support memory-less logits computation
+                        if (slot.need_logits() && !llama_get_memory(ctx)) {
+                            send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
+                            slot.release();
+                            continue;
+                        }
+
+                        if (!slot.can_split()) {
+                            if (slot.task->n_tokens() > n_ubatch) {
+                                send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
+                                slot.release();
+                                continue;
+                            }
+
+                            if (slot.task->n_tokens() > slot.n_ctx) {
+                                send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
+                                slot.release();
+                                continue;
+                            }
+                        } else {
+                            if (slot.task->n_tokens() >= slot.n_ctx) {
+                                send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
+                                slot.release();
+                                continue;
+                            }
+
+                            if (slot.task->params.cache_prompt) {
+                                // reuse any previously computed tokens that are common with the new prompt
+                                n_past = slot.prompt.tokens.get_common_prefix(input_tokens);
+
+                                // if there is an alora invoked, don't cache after the invocation start
+                                if (slot.alora_invocation_start > 0) {
+                                    SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
+                                    n_past = std::min(n_past, slot.alora_invocation_start - 1);
+                                }
+
+                                // reuse chunks from the cached prompt by shifting their KV cache in the new position
+                                if (params_base.n_cache_reuse > 0) {
+                                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
+
+                                    size_t head_c = n_past; // cache
+                                    size_t head_p = n_past; // current prompt
+
+                                    if (mctx) {
+                                        // we should never reach this
+                                        GGML_ABORT("not supported by multimodal");
+                                    }
+
+                                    SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past);
+
+                                    while (head_c < slot.prompt.tokens.size() &&
+                                           head_p < input_tokens.size()) {
+
+                                        size_t n_match = 0;
+                                        while (head_c + n_match < slot.prompt.tokens.size() &&
+                                               head_p + n_match < input_tokens.size()       &&
+                                               slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
+
+                                            n_match++;
+                                        }
+
+                                        if (n_match >= (size_t) params_base.n_cache_reuse) {
+                                            SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
+                                            //for (size_t i = head_p; i < head_p + n_match; i++) {
+                                            //    SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
+                                            //}
+
+                                            const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
+
+                                            llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
+                                            llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
+
+                                            for (size_t i = 0; i < n_match; i++) {
+                                                slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
+                                                n_past++;
+                                            }
+
+                                            head_c += n_match;
+                                            head_p += n_match;
+                                        } else {
+                                            head_c += 1;
+                                        }
+                                    }
+
+                                    SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
+                                }
+                            } else {
+                                // if we don't cache the prompt, we have to remove all previous tokens
+                                n_past = 0;
+                            }
+
+                            // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
+                            const auto n_swa = std::max(1, llama_model_n_swa(model));
+
+                            // the largest pos_min required for a checkpoint to be useful
+                            const auto pos_min_thold = std::max(0, n_past - n_swa);
+
+                            // note: disallow with mtmd contexts for now
+                            //       https://github.com/ggml-org/llama.cpp/issues/17043
+                            if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
+                                const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
+                                if (pos_min == -1) {
+                                    SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
+                                    GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
+                                }
+
+                                // when the prompt prefix does not match, print the tokens around the mismatch
+                                // this is useful for debugging prompt caching
+                                if (slots_debug) {
+                                    const int np0 = std::max<int>(n_past - 4, 0);
+                                    const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));
+
+                                    std::stringstream ss0;
+                                    std::stringstream ss1;
+
+                                    std::stringstream st0;
+                                    std::stringstream st1;
+
+                                    ss0 << "old: ... ";
+                                    ss1 << "new: ... ";
+
+                                    for (int i = np0; i < np1; i++) {
+                                        if (i == n_past) {
+                                            ss0 << " | ";
+                                            ss1 << " | ";
+                                        }
+
+                                        {
+                                            const auto token = slot.prompt.tokens[i];
+                                            const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
+                                            ss0 << piece;
+                                            st0 << std::setw(8) << token;
+                                        }
+
+                                        {
+                                            const auto token = slot.task->tokens[i];
+                                            const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
+                                            ss1 << piece;
+                                            st1 << std::setw(8) << token;
+                                        }
+                                    }
+
+                                    SLT_WRN(slot, "%s\n", ss0.str().c_str());
+                                    SLT_WRN(slot, "%s\n", ss1.str().c_str());
+
+                                    SLT_WRN(slot, "%s\n", st0.str().c_str());
+                                    SLT_WRN(slot, "%s\n", st1.str().c_str());
+                                }
+
+                                if (pos_min > pos_min_thold) {
+                                    // TODO: support can be added in the future when corresponding vision models get released
+                                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
+
+                                    SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
+
+                                    // search for a context checkpoint
+                                    const auto it = std::find_if(
+                                        slot.prompt.checkpoints.rbegin(),
+                                        slot.prompt.checkpoints.rend(),
+                                        [&](const auto & cur) {
+                                            // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
+                                            return cur.pos_min < pos_min_thold;
+                                        }
+                                    );
+
+                                    bool do_reset = it == slot.prompt.checkpoints.rend();
+
+                                    if (!do_reset) {
+                                        // restore the context checkpoint
+                                        const size_t checkpoint_size = it->data.size();
+                                        const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
+
+                                        if (n != checkpoint_size) {
+                                            SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
+                                            do_reset = true;
+                                            //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
+                                        } else {
+                                            n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
+                                            SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
+                                        }
+                                    }
+
+                                    if (do_reset) {
+                                        SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
+                                                "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
+                                        n_past = 0;
+                                    }
+                                }
+                            }
+
+                            {
+                                // erase any checkpoints with pos_min > pos_min_thold
+                                for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
+                                    const auto & cur = *it;
+                                    if (cur.pos_min > pos_min_thold) {
+                                        SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
+                                        it = slot.prompt.checkpoints.erase(it);
+                                    } else {
+                                        ++it;
+                                    }
+                                }
+                            }
+                        }
+
+                        // [TAG_PROMPT_LOGITS]
+                        if (n_past == slot.task->n_tokens() && n_past > 0) {
+                            SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
+                            n_past--;
+                            SLT_WRN(slot, "n_past was set to %d\n", n_past);
+                        }
+
+                        slot.n_prompt_tokens_cache     = n_past;
+                        slot.n_prompt_tokens_processed = 0;
+
+                        slot.prompt.tokens.keep_first(n_past);
+                    }
+
+                    if (!slot.can_split()) {
+                        // cannot fit the prompt in the current batch - will try next iter
+                        if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
+                            continue;
+                        }
+                    }
+
+                    // truncate any tokens that are beyond n_past for this slot
+                    const llama_pos p0 = slot.prompt.tokens.pos_next();
+
+                    SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);
+
+                    if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
+                        SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);
+
+                        clear_slot(slot);
+
+                        // there is no common part left
+                        slot.n_prompt_tokens_cache = 0;
+                    }
+
+                    // check if we should process the image
+                    if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
+                        // process the image
+                        size_t n_tokens_out = 0;
+                        int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
+                        if (res != 0) {
+                            SLT_ERR(slot, "failed to process image, res = %d\n", res);
+                            send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
+                            slot.release();
+                            continue;
+                        }
+
+                        slot.n_prompt_tokens_processed += n_tokens_out;
+
+                        // add the image chunk to cache
+                        {
+                            const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
+                            slot.prompt.tokens.push_back(chunk.get()); // copy
+                        }
+                    }
+
+                    // If using an alora, there may be uncached tokens that come
+                    // before the invocation sequence. When this happens, the
+                    // tokens before the invocation sequence need to be
+                    // processed without the adapter in a separate batch, then
+                    // the adapter needs to be enabled for the remaining tokens.
+                    if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
+                        SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
+                        const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
+                        GGML_ASSERT(enabled_loras.size() == 1);
+                        alora_scale = slot.lora[enabled_loras[0]].scale;
+                        slot.lora[enabled_loras[0]].scale = 0.0f;
+                        alora_disabled_id = enabled_loras[0];
+                    }
+
+                    bool do_checkpoint = params_base.n_ctx_checkpoints > 0;
+
+                    // make checkpoints only for completion tasks
+                    do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;
+
+                    // make a checkpoint of the parts of the memory that cannot be rolled back.
+                    // checkpoints are created only if:
+                    // - the model uses SWA and we are not using `swa_full`
+                    // - the model architecture is marked as recurrent or hybrid
+                    //
+                    // TODO: try to make this conditional on the context or the memory module, instead of the model type
+                    do_checkpoint = do_checkpoint && (
+                            llama_model_is_recurrent(model) ||
+                            llama_model_is_hybrid(model) ||
+                            (llama_model_n_swa(model) > 0 && !params_base.swa_full)
+                            );
+
+                    // add prompt tokens for processing in the current batch
+                    while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
+                        // get next token to process
+                        llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
+                        if (cur_tok == LLAMA_TOKEN_NULL) {
+                            break; // end of text chunk
+                        }
+
+                        // if this is an alora request with pre-invocation
+                        // tokens that are not cached, we need to stop filling
+                        // this batch at those pre-invocation tokens.
+                        if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
+                            SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
+                            break;
+                        }
+
+                        // embedding requires all tokens in the batch to be output
+                        common_batch_add(batch,
+                            cur_tok,
+                            slot.prompt.tokens.pos_next(),
+                            { slot.id },
+                            slot.need_embd());
+                        slot.prompt.tokens.push_back(cur_tok);
+
+                        slot.n_prompt_tokens_processed++;
+
+                        // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
+                        if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
+                            break;
+                        }
+                    }
+
+                    // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
+
+                    SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());
+
+                    // entire prompt has been processed
+                    if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
+                        slot.state = SLOT_STATE_DONE_PROMPT;
+
+                        GGML_ASSERT(batch.n_tokens > 0);
+
+                        common_sampler_reset(slot.smpl);
+
+                        // Process all prompt tokens through sampler system
+                        for (int i = 0; i < slot.task->n_tokens(); ++i) {
+                            llama_token id = input_tokens[i];
+                            if (id != LLAMA_TOKEN_NULL) {
+                                common_sampler_accept(slot.smpl, id, false);
+                            }
+                        }
+
+                        // extract the logits only for the last token
+                        batch.logits[batch.n_tokens - 1] = true;
+
+                        slot.n_decoded = 0;
+                        slot.i_batch   = batch.n_tokens - 1;
+
+                        SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);
+
+                        const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
+                        const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);
+
+                        // no need for empty or small checkpoints
+                        do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);
+
+                        // no need to create checkpoints that are too close together
+                        do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);
+
+                        if (do_checkpoint) {
+                            while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
+                                // make room for the new checkpoint, if needed
+                                const auto & cur = slot.prompt.checkpoints.front();
+
+                                SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
+                                        cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
+
+                                slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
+                            }
+
+                            const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
+
+                            auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
+                                /*.pos_min = */ pos_min,
+                                /*.pos_max = */ pos_max,
+                                /*.data    = */ std::vector<uint8_t>(checkpoint_size),
+                            });
+
+                            llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
+
+                            SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
+                                    (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
+                        }
+                    }
+                }
+
+                if (!slot_batched) {
+                    slot_batched = &slot;
+                }
+
+                if (batch.n_tokens >= n_batch) {
+                    break;
+                }
+            }
+        }
+
+        if (batch.n_tokens == 0) {
+            SRV_WRN("%s", "no tokens to decode\n");
+            return;
+        }
+
+        SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
+
+        if (slot_batched) {
+            // apply lora, only need to do it once per batch
+            common_set_adapter_lora(ctx, slot_batched->lora);
+
+            // if the lora is temporarily disabled for an alora, re-enable it
+            // for next time
+            if (alora_scale > 0.0f) {
+                SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
+                slot_batched->lora[alora_disabled_id].scale = alora_scale;
+            }
+
+            llama_set_embeddings(ctx, slot_batched->need_embd());
+        }
+
+        int32_t i_next = 0;
+
+        // process the created batch of tokens
+        for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
+            const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
+
+            llama_batch batch_view = {
+                n_tokens,
+                batch.token    + i,
+                nullptr,
+                batch.pos      + i,
+                batch.n_seq_id + i,
+                batch.seq_id   + i,
+                batch.logits   + i,
+            };
+
+            const int ret = llama_decode(ctx, batch_view);
+
+            metrics.on_decoded(slots);
+
+            if (ret != 0) {
+                {
+                    std::string err;
+
+                    if (n_batch == 1 && ret == 1) {
+                        // TODO: try to terminate only the largest active slot/sequence and continue with the rest
+                        //       need to remove the tokens from the current batch too
+                        err = "Context size has been exceeded.";
+                    }
+
+                    if (ret == -1) {
+                        err = "Invalid input batch.";
+                    }
+
+                    if (ret < -1) {
+                        // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
+                        err = "Compute error.";
+                    }
+
+                    // TODO: handle ret == 2 (abort) when we start aborting
+
+                    if (!err.empty()) {
+                        SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
+
+                        for (auto & slot : slots) {
+                            if (slot.is_processing()) {
+                                send_error(slot, err);
+                                slot.release();
+
+                                // note: it's complicated to keep track of how much of the current batch has been
+                                //       processed before the error occurred, so we simply clear the entire context
+                                clear_slot(slot);
+                            }
+                        }
+
+                        break;
+                    }
+                }
+
+                // retry with half the batch size to try to find a free slot in the KV cache
+                if (!try_clear_idle_slots()) {
+                    n_batch /= 2;
+                }
+
+                SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
+
+                continue; // continue loop of n_batch
+            }
+
+            // move the head of the batch forward with the number of tokens we just processed
+            i_next = i + n_tokens;
+
+            // on successful decode, restore the original batch size
+            n_batch = llama_n_batch(ctx);
+
+            for (auto & slot : slots) {
+                // optionally send prompt processing progress
+                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
+                    if (slot.task->params.stream && slot.task->params.return_progress) {
+                        send_partial_response(slot, {}, true);
+                    }
+                }
+
+                if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
+                    continue; // continue loop of slots
+                }
+
+                if (slot.state == SLOT_STATE_DONE_PROMPT) {
+                    if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
+                        // prompt evaluated for embedding
+                        send_embedding(slot, batch_view);
+                        slot.release();
+                        slot.i_batch = -1;
+                        continue; // continue loop of slots
+                    }
+
+                    if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
+                        send_rerank(slot, batch_view);
+                        slot.release();
+                        slot.i_batch = -1;
+                        continue; // continue loop of slots
+                    }
+
+                    // prompt evaluated for next-token prediction
+                    slot.state = SLOT_STATE_GENERATING;
+                } else if (slot.state != SLOT_STATE_GENERATING) {
+                    continue; // continue loop of slots
+                }
+
+                const int tok_idx = slot.i_batch - i;
+
+                llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
+
+                slot.i_batch = -1;
+
+                common_sampler_accept(slot.smpl, id, true);
+
+                slot.n_decoded += 1;
+
+                const int64_t t_current = ggml_time_us();
+
+                if (slot.n_decoded == 1) {
+                    slot.t_start_generation = t_current;
+                    slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
+                    metrics.on_prompt_eval(slot);
+                }
+
+                slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
+
+                completion_token_output result;
+                result.tok          = id;
+                result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
+                result.prob         = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
+
+                if (slot.task->params.sampling.n_probs > 0) {
+                    populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
+                }
+
+                if (!process_token(result, slot)) {
+                    // release slot because of stop condition
+                    slot.print_timings();
+                    send_final_response(slot);
+                    metrics.on_prediction(slot);
+                    slot.release();
+
+                    continue;
+                }
+            }
+
+            // do speculative decoding
+            // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
+            //       perform the speculative drafting for all sequences at the same time in a single batch
+            for (auto & slot : slots) {
+                if (!slot.is_processing() || !slot.can_speculate()) {
+                    continue;
+                }
+
+                if (slot.state != SLOT_STATE_GENERATING) {
+                    continue;
+                }
+
+                if (mctx) {
+                    // we should never reach this, as speculative is automatically disabled if mmproj is loaded
+                    GGML_ABORT("not supported by multimodal");
+                }
+
+                // determine the max draft that fits the current slot state
+                int n_draft_max = slot.task->params.speculative.n_max;
+
+                // note: slot.prompt is not yet expanded with the `id` token sampled above
+                //       also, need to leave space for 1 extra token to allow context shifts
+                n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2);
+
+                if (slot.n_remaining > 0) {
+                    n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
+                }
+
+                SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
+
+                if (n_draft_max < slot.task->params.speculative.n_min) {
+                    SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min);
+
+                    continue;
+                }
+
+                llama_token id = slot.sampled;
+
+                struct common_speculative_params params_spec;
+                params_spec.n_draft = n_draft_max;
+                params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
+                params_spec.p_min   = slot.task->params.speculative.p_min;
+
+                const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
+                llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
+
+                // ignore small drafts
+                if (slot.task->params.speculative.n_min > (int) draft.size()) {
+                    SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
+
+                    continue;
+                }
+
+                // keep track of total number of drafted tokens tested
+                slot.n_draft_total += draft.size();
+
+                // construct the speculation batch
+                common_batch_clear(slot.batch_spec);
+                common_batch_add  (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true);
+
+                for (size_t i = 0; i < draft.size(); ++i) {
+                    common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true);
+                }
+
+                SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
+
+                llama_decode(ctx, slot.batch_spec);
+
+                // the accepted tokens from the speculation
+                const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
+
+                slot.n_decoded += ids.size();
+
+                // update how many tokens out of those tested were accepted
+                slot.n_draft_accepted += ids.size() - 1;
+
+                slot.prompt.tokens.push_back(id);
+                slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
+
+                llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
+
+                for (size_t i = 0; i < ids.size(); ++i) {
+                    completion_token_output result;
+
+                    result.tok          = ids[i];
+                    result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
+                    result.prob         = 1.0f; // set later
+
+                    // TODO: set result.probs
+
+                    if (!process_token(result, slot)) {
+                        slot.print_timings();
+                        send_final_response(slot);
+                        metrics.on_prediction(slot);
+                        slot.release();
+
+                        break;
+                    }
+                }
+
+                SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens());
+            }
+        }
+
+        SRV_DBG("%s", "run slots completed\n");
+    }
+
+    json model_meta() const {
+        return json {
+            {"vocab_type",  llama_vocab_type       (vocab)},
+            {"n_vocab",     llama_vocab_n_tokens   (vocab)},
+            {"n_ctx_train", llama_model_n_ctx_train(model)},
+            {"n_embd",      llama_model_n_embd     (model)},
+            {"n_params",    llama_model_n_params   (model)},
+            {"size",        llama_model_size       (model)},
+        };
+    }
+
+    int get_slot_n_ctx() {
+        return slots.back().n_ctx;
+    }
+};
+
+//
+// server_context (public API)
+//
+
+server_context::server_context() : impl(new server_context_impl()) {}
+server_context::~server_context() = default;
+
+void server_context::init() {
+    impl->init();
+}
+
+bool server_context::load_model(const common_params & params) {
+    return impl->load_model(params);
+}
+
+void server_context::start_loop() {
+    impl->queue_tasks.start_loop();
+}
+
+void server_context::terminate() {
+    impl->queue_tasks.terminate();
+}
+
+llama_context * server_context::get_llama_context() const {
+    return impl->ctx;
+}
+
+std::pair<server_queue &, server_response &> server_context::get_queues() {
+    return { impl->queue_tasks, impl->queue_results };
+}
+
+
+
+// generator-like API for HTTP response generation
+struct server_res_generator : server_http_res {
+    server_response_reader rd;
+    server_res_generator(server_context_impl & ctx_server)
+        : rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS) {}
+    void ok(const json & response_data) {
+        status = 200;
+        data = safe_json_to_str(response_data);
+    }
+    void error(const json & error_data) {
+        status = json_value(error_data, "code", 500);
+        data = safe_json_to_str({{ "error", error_data }});
+    }
+};
+
+
+
+//
+// server_routes
+//
+
+static std::unique_ptr<server_res_generator> handle_completions_impl(
+            server_context_impl & ctx_server,
+            server_task_type type,
+            const json & data,
+            const std::vector<raw_buffer> & files,
+            const std::function<bool()> & should_stop,
+            task_response_type res_type) {
+    GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
+
+    auto res = std::make_unique<server_res_generator>(ctx_server);
+    auto completion_id = gen_chatcmplid();
+    auto & rd = res->rd;
+
+    try {
+        std::vector<server_task> tasks;
+
+        const auto & prompt = data.at("prompt");
+        // TODO: this log can become very long, put it behind a flag or think about a more compact format
+        //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
+
+        // process prompt
+        std::vector<server_tokens> inputs;
+
+        if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) {
+            // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
+            inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
+        } else {
+            // Everything else, including multimodal completions.
+            inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
+        }
+        tasks.reserve(inputs.size());
+        for (size_t i = 0; i < inputs.size(); i++) {
+            server_task task = server_task(type);
+
+            task.id    = ctx_server.queue_tasks.get_new_id();
+            task.index = i;
+
+            task.tokens = std::move(inputs[i]);
+            task.params = server_task::params_from_json_cmpl(
+                    ctx_server.ctx,
+                    ctx_server.params_base,
+                    data);
+            task.id_slot = json_value(data, "id_slot", -1);
+
+            // OAI-compat
+            task.params.res_type          = res_type;
+            task.params.oaicompat_cmpl_id = completion_id;
+            // oaicompat_model is already populated by params_from_json_cmpl
+
+            tasks.push_back(std::move(task));
+        }
+
+        rd.post_tasks(std::move(tasks));
+    } catch (const std::exception & e) {
+        res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
+        return res;
+    }
+
+    bool stream = json_value(data, "stream", false);
+
+    if (!stream) {
+        // non-stream, wait for the results
+        auto all_results = rd.wait_for_all(should_stop);
+        if (all_results.is_terminated) {
+            return res; // connection is closed
+        } else if (all_results.error) {
+            res->error(all_results.error->to_json());
+            return res;
+        } else {
+            json arr = json::array();
+            for (auto & res : all_results.results) {
+                GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
+                arr.push_back(res->to_json());
+            }
+            // if single request, return single object instead of array
+            res->ok(arr.size() == 1 ? arr[0] : arr);
+        }
+
+    } else {
+        // in streaming mode, the first error must be treated as non-stream response
+        // this is to match the OAI API behavior
+        // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
+        server_task_result_ptr first_result = rd.next(should_stop);
+        if (first_result == nullptr) {
+            return res; // connection is closed
+        } else if (first_result->is_error()) {
+            res->error(first_result->to_json());
+            return res;
+        } else {
+            GGML_ASSERT(
+                dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr
+                || dynamic_cast<server_task_result_cmpl_final*>(first_result.get()) != nullptr
+            );
+        }
+
+        // next responses are streamed
+        if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+            res->data = format_anthropic_sse(first_result->to_json());
+        } else {
+            res->data = format_oai_sse(first_result->to_json()); // to be sent immediately
+        }
+        res->status = 200;
+        res->content_type = "text/event-stream";
+        res->next = [res_this = res.get(), res_type, &should_stop](std::string & output) -> bool {
+            if (should_stop()) {
+                SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
+                return false; // should_stop condition met
+            }
+
+            if (!res_this->data.empty()) {
+                // flush the first chunk
+                output = std::move(res_this->data);
+                res_this->data.clear();
+                return true;
+            }
+
+            server_response_reader & rd = res_this->rd;
+
+            // check if there is more data
+            if (!rd.has_next()) {
+                if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+                    // Anthropic doesn't send [DONE], message_stop was already sent
+                    output = "";
+                } else if (res_type != TASK_RESPONSE_TYPE_NONE) {
+                    output = "data: [DONE]\n\n";
+                } else {
+                    output = "";
+                }
+                SRV_DBG("%s", "all results received, terminating stream\n");
+                return false; // no more data, terminate
+            }
+
+            // receive subsequent results
+            auto result = rd.next(should_stop);
+            if (result == nullptr) {
+                SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
+                return false; // should_stop condition met
+            }
+
+            // send the results
+            json res_json = result->to_json();
+            if (result->is_error()) {
+                if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+                    output = format_anthropic_sse({
+                        {"event", "error"},
+                        {"data", res_json},
+                    });
+                } else {
+                    output = format_oai_sse(json {{ "error", res_json }});
+                }
+                SRV_DBG("%s", "error received during streaming, terminating stream\n");
+                return false; // terminate on error
+            } else {
+                GGML_ASSERT(
+                    dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
+                    || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
+                );
+                if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
+                    output = format_anthropic_sse(res_json);
+                } else {
+                    output = format_oai_sse(res_json);
+                }
+            }
+
+            // has next data, continue
+            return true;
+        };
+    }
+
+    return res;
+}
+
+void server_routes::init_routes() {
+    this->get_health = [this](const server_http_req &) {
+        // error and loading states are handled by middleware
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        res->ok({{"status", "ok"}});
+        return res;
+    };
+
+    this->get_metrics = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        if (!params.endpoint_metrics) {
+            res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+
+        // request slots data using task queue
+        // TODO: use server_response_reader
+        int task_id = ctx_server.queue_tasks.get_new_id();
+        {
+            server_task task(SERVER_TASK_TYPE_METRICS);
+            task.id = task_id;
+            ctx_server.queue_results.add_waiting_task_id(task_id);
+            ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
+        }
+
+        // get the result
+        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+        ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+        if (result->is_error()) {
+            res->error(result->to_json());
+            return res;
+        }
+
+        // TODO: get rid of this dynamic_cast
+        auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
+        GGML_ASSERT(res_task != nullptr);
+
+        // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
+        json all_metrics_def = json {
+            {"counter", {{
+                    {"name",  "prompt_tokens_total"},
+                    {"help",  "Number of prompt tokens processed."},
+                    {"value",  (uint64_t) res_task->n_prompt_tokens_processed_total}
+            }, {
+                    {"name",  "prompt_seconds_total"},
+                    {"help",  "Prompt process time"},
+                    {"value",  (uint64_t) res_task->t_prompt_processing_total / 1.e3}
+            }, {
+                    {"name",  "tokens_predicted_total"},
+                    {"help",  "Number of generation tokens processed."},
+                    {"value",  (uint64_t) res_task->n_tokens_predicted_total}
+            }, {
+                    {"name",  "tokens_predicted_seconds_total"},
+                    {"help",  "Predict process time"},
+                    {"value",  (uint64_t) res_task->t_tokens_generation_total / 1.e3}
+            }, {
+                    {"name",  "n_decode_total"},
+                    {"help",  "Total number of llama_decode() calls"},
+                    {"value",  res_task->n_decode_total}
+            }, {
+                    {"name",  "n_tokens_max"},
+                    {"help",  "Largest observed n_tokens."},
+                    {"value",  res_task->n_tokens_max}
+            }, {
+                    {"name",  "n_busy_slots_per_decode"},
+                    {"help",  "Average number of busy slots per llama_decode() call"},
+                    {"value",  (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
+            }}},
+            {"gauge", {{
+                    {"name",  "prompt_tokens_seconds"},
+                    {"help",  "Average prompt throughput in tokens/s."},
+                    {"value",  res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
+            },{
+                    {"name",  "predicted_tokens_seconds"},
+                    {"help",  "Average generation throughput in tokens/s."},
+                    {"value",  res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
+            },{
+                    {"name",  "requests_processing"},
+                    {"help",  "Number of requests processing."},
+                    {"value",  (uint64_t) res_task->n_processing_slots}
+            },{
+                    {"name",  "requests_deferred"},
+                    {"help",  "Number of requests deferred."},
+                    {"value",  (uint64_t) res_task->n_tasks_deferred}
+            }}}
+        };
+
+        std::stringstream prometheus;
+
+        for (const auto & el : all_metrics_def.items()) {
+            const auto & type        = el.key();
+            const auto & metrics_def = el.value();
+
+            for (const auto & metric_def : metrics_def) {
+                const std::string name = metric_def.at("name");
+                const std::string help = metric_def.at("help");
+
+                auto value = json_value(metric_def, "value", 0.);
+                prometheus << "# HELP llamacpp:" << name << " " << help  << "\n"
+                            << "# TYPE llamacpp:" << name << " " << type  << "\n"
+                            << "llamacpp:"        << name << " " << value << "\n";
+            }
+        }
+
+        res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start);
+        res->content_type = "text/plain; version=0.0.4";
+        res->status = 200;
+        res->data = prometheus.str();
+        return res;
+    };
+
+    this->get_slots = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        if (!params.endpoint_slots) {
+            res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+
+        // request slots data using task queue
+        int task_id = ctx_server.queue_tasks.get_new_id();
+        {
+            server_task task(SERVER_TASK_TYPE_METRICS);
+            task.id = task_id;
+            ctx_server.queue_results.add_waiting_task_id(task_id);
+            ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
+        }
+
+        // get the result
+        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+        ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+        if (result->is_error()) {
+            res->error(result->to_json());
+            return res;
+        }
+
+        // TODO: get rid of this dynamic_cast
+        auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
+        GGML_ASSERT(res_task != nullptr);
+
+        // optionally return "fail_on_no_slot" error
+        if (!req.get_param("fail_on_no_slot").empty()) {
+            if (res_task->n_idle_slots == 0) {
+                res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
+                return res;
+            }
+        }
+
+        res->ok(res_task->slots_data);
+        return res;
+    };
+
+    this->post_slots = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        if (params.slot_save_path.empty()) {
+            res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+
+        std::string id_slot_str = req.get_param("id_slot");
+        int id_slot;
+
+        try {
+            id_slot = std::stoi(id_slot_str);
+        } catch (const std::exception &) {
+            res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+
+        std::string action = req.get_param("action");
+
+        if (action == "save") {
+            return handle_slots_save(req, id_slot);
+        } else if (action == "restore") {
+            return handle_slots_restore(req, id_slot);
+        } else if (action == "erase") {
+            return handle_slots_erase(req, id_slot);
+        } else {
+            res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+    };
+
+    this->get_props = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        json default_generation_settings_for_props;
+
+        {
+            task_params params;
+
+            params.sampling = ctx_server.params_base.sampling;
+
+            default_generation_settings_for_props = json {
+                {"params", params.to_json(true)},
+                {"n_ctx",  ctx_server.get_slot_n_ctx()},
+            };
+        }
+
+        // this endpoint is publicly available, please only return what is safe to be exposed
+        json data = {
+            { "default_generation_settings", default_generation_settings_for_props },
+            { "total_slots",                 ctx_server.params_base.n_parallel },
+            { "model_alias",                 ctx_server.params_base.model_alias },
+            { "model_path",                  ctx_server.params_base.model.path },
+            { "modalities",                  json {
+                {"vision", ctx_server.oai_parser_opt.allow_image},
+                {"audio",  ctx_server.oai_parser_opt.allow_audio},
+            } },
+            { "endpoint_slots",              params.endpoint_slots },
+            { "endpoint_props",              params.endpoint_props },
+            { "endpoint_metrics",            params.endpoint_metrics },
+            { "webui",                       params.webui },
+            { "chat_template",               common_chat_templates_source(ctx_server.chat_templates.get()) },
+            { "bos_token",                   common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
+            { "eos_token",                   common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
+            { "build_info",                  build_info },
+        };
+        if (ctx_server.params_base.use_jinja) {
+            if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
+                data["chat_template_tool_use"] = tool_use_src;
+            }
+        }
+
+        res->ok(data);
+        return res;
+    };
+
+    this->post_props = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        if (!params.endpoint_props) {
+            res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+        // update any props here
+
+        res->ok({{ "success", true }});
+        return res;
+    };
+
+    this->get_api_show = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        bool has_mtmd = ctx_server.mctx != nullptr;
+        json data = {
+            {
+                "template", common_chat_templates_source(ctx_server.chat_templates.get()),
+            },
+            {
+                "model_info", {
+                    { "llama.context_length", ctx_server.get_slot_n_ctx() },
+                }
+            },
+            {"modelfile", ""},
+            {"parameters", ""},
+            {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
+            {"details", {
+                {"parent_model", ""},
+                {"format", "gguf"},
+                {"family", ""},
+                {"families", {""}},
+                {"parameter_size", ""},
+                {"quantization_level", ""}
+            }},
+            {"model_info", ""},
+            {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
+        };
+
+        res->ok(data);
+        return res;
+    };
+
+    this->post_infill = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        // check model compatibility
+        std::string err;
+        if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
+            err += "prefix token is missing. ";
+        }
+        if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
+            err += "suffix token is missing. ";
+        }
+        if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
+            err += "middle token is missing. ";
+        }
+        if (!err.empty()) {
+            res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+
+        // validate input
+        json data = json::parse(req.body);
+        if (data.contains("prompt") && !data.at("prompt").is_string()) {
+            // prompt is optional
+            res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
+        }
+
+        if (!data.contains("input_prefix")) {
+            res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
+        }
+
+        if (!data.contains("input_suffix")) {
+            res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
+        }
+
+        if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
+            // input_extra is optional
+            res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+
+        json input_extra = json_value(data, "input_extra", json::array());
+        for (const auto & chunk : input_extra) {
+            // { "text": string, "filename": string }
+            if (!chunk.contains("text") || !chunk.at("text").is_string()) {
+                res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
+                return res;
+            }
+            // filename is optional
+            if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
+                res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
+                return res;
+            }
+        }
+        data["input_extra"] = input_extra; // default to empty array if it's not exist
+
+        std::string prompt = json_value(data, "prompt", std::string());
+        std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
+        SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
+        data["prompt"] = format_prompt_infill(
+            ctx_server.vocab,
+            data.at("input_prefix"),
+            data.at("input_suffix"),
+            data.at("input_extra"),
+            ctx_server.params_base.n_batch,
+            ctx_server.params_base.n_predict,
+            ctx_server.get_slot_n_ctx(),
+            ctx_server.params_base.spm_infill,
+            tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
+        );
+
+        std::vector<raw_buffer> files; // dummy
+        return handle_completions_impl(
+            ctx_server,
+            SERVER_TASK_TYPE_INFILL,
+            data,
+            files,
+            req.should_stop,
+            TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible
+    };
+
+    this->post_completions = [this](const server_http_req & req) {
+        std::vector<raw_buffer> files; // dummy
+        const json body = json::parse(req.body);
+        return handle_completions_impl(
+            ctx_server,
+            SERVER_TASK_TYPE_COMPLETION,
+            body,
+            files,
+            req.should_stop,
+            TASK_RESPONSE_TYPE_NONE);
+    };
+
+    this->post_completions_oai = [this](const server_http_req & req) {
+        std::vector<raw_buffer> files; // dummy
+        const json body = json::parse(req.body);
+        return handle_completions_impl(
+            ctx_server,
+            SERVER_TASK_TYPE_COMPLETION,
+            body,
+            files,
+            req.should_stop,
+            TASK_RESPONSE_TYPE_OAI_CMPL);
+    };
+
+    this->post_chat_completions = [this](const server_http_req & req) {
+        std::vector<raw_buffer> files;
+        json body = json::parse(req.body);
+        json body_parsed = oaicompat_chat_params_parse(
+            body,
+            ctx_server.oai_parser_opt,
+            files);
+        return handle_completions_impl(
+            ctx_server,
+            SERVER_TASK_TYPE_COMPLETION,
+            body_parsed,
+            files,
+            req.should_stop,
+            TASK_RESPONSE_TYPE_OAI_CHAT);
+    };
+
+    this->post_anthropic_messages = [this](const server_http_req & req) {
+        std::vector<raw_buffer> files;
+        json body = convert_anthropic_to_oai(json::parse(req.body));
+        json body_parsed = oaicompat_chat_params_parse(
+            body,
+            ctx_server.oai_parser_opt,
+            files);
+        return handle_completions_impl(
+            ctx_server,
+            SERVER_TASK_TYPE_COMPLETION,
+            body_parsed,
+            files,
+            req.should_stop,
+            TASK_RESPONSE_TYPE_ANTHROPIC);
+    };
+
+    this->post_anthropic_count_tokens = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        std::vector<raw_buffer> files;
+        json body = convert_anthropic_to_oai(json::parse(req.body));
+        json body_parsed = oaicompat_chat_params_parse(
+            body,
+            ctx_server.oai_parser_opt,
+            files);
+
+        json prompt = body_parsed.at("prompt");
+        llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true);
+
+        res->ok({{"input_tokens", static_cast<int>(tokens.size())}});
+        return res;
+    };
+
+    // same with handle_chat_completions, but without inference part
+    this->post_apply_template = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        std::vector<raw_buffer> files; // dummy, unused
+        json body = json::parse(req.body);
+        json data = oaicompat_chat_params_parse(
+            body,
+            ctx_server.oai_parser_opt,
+            files);
+        res->ok({{ "prompt", std::move(data.at("prompt")) }});
+        return res;
+    };
+
+    this->get_models = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        json model_meta = nullptr;
+        if (is_ready()) {
+            model_meta = ctx_server.model_meta();
+        }
+        bool has_mtmd = ctx_server.mctx != nullptr;
+        json models = {
+            {"models", {
+                {
+                    {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
+                    {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
+                    {"modified_at", ""},
+                    {"size", ""},
+                    {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
+                    {"type", "model"},
+                    {"description", ""},
+                    {"tags", {""}},
+                    {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
+                    {"parameters", ""},
+                    {"details", {
+                        {"parent_model", ""},
+                        {"format", "gguf"},
+                        {"family", ""},
+                        {"families", {""}},
+                        {"parameter_size", ""},
+                        {"quantization_level", ""}
+                    }}
+                }
+            }},
+            {"object", "list"},
+            {"data", {
+                {
+                    {"id",       params.model_alias.empty() ? params.model.path : params.model_alias},
+                    {"object",   "model"},
+                    {"created",  std::time(0)},
+                    {"owned_by", "llamacpp"},
+                    {"meta",     model_meta},
+                },
+            }}
+        };
+
+        res->ok(models);
+        return res;
+    };
+
+    this->post_tokenize = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        const json body = json::parse(req.body);
+        json tokens_response = json::array();
+        if (body.count("content") != 0) {
+            const bool add_special = json_value(body, "add_special", false);
+            const bool parse_special = json_value(body, "parse_special", true);
+            const bool with_pieces = json_value(body, "with_pieces", false);
+
+            llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
+
+            if (with_pieces) {
+                for (const auto& token : tokens) {
+                    std::string piece = common_token_to_piece(ctx_server.ctx, token);
+                    json piece_json;
+
+                    // Check if the piece is valid UTF-8
+                    if (is_valid_utf8(piece)) {
+                        piece_json = piece;
+                    } else {
+                        // If not valid UTF-8, store as array of byte values
+                        piece_json = json::array();
+                        for (unsigned char c : piece) {
+                            piece_json.push_back(static_cast<int>(c));
+                        }
+                    }
+
+                    tokens_response.push_back({
+                        {"id", token},
+                        {"piece", piece_json}
+                    });
+                }
+            } else {
+                tokens_response = tokens;
+            }
+        }
+
+        res->ok(json{{"tokens", std::move(tokens_response)}});
+        return res;
+    };
+
+    this->post_detokenize = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        const json body = json::parse(req.body);
+
+        std::string content;
+        if (body.count("tokens") != 0) {
+            const llama_tokens tokens = body.at("tokens");
+            content = tokens_to_str(ctx_server.ctx, tokens);
+        }
+
+        res->ok(json{{"content", std::move(content)}});
+        return res;
+    };
+
+    this->post_embeddings = [this](const server_http_req & req) {
+        return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE);
+    };
+
+    this->post_embeddings_oai = [this](const server_http_req & req) {
+        return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD);
+    };
+
+    this->post_rerank = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
+            res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
+            return res;
+        }
+
+        const json body = json::parse(req.body);
+
+        // if true, use TEI API format, otherwise use Jina API format
+        // Jina: https://jina.ai/reranker/
+        // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
+        bool is_tei_format = body.contains("texts");
+
+        json query;
+        if (body.count("query") == 1) {
+            query = body.at("query");
+            if (!query.is_string()) {
+                res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
+                return res;
+            }
+        } else {
+            res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+
+        std::vector<std::string> documents = json_value(body, "documents",
+                                             json_value(body, "texts", std::vector<std::string>()));
+        if (documents.empty()) {
+            res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+
+        int top_n = json_value(body, "top_n", (int)documents.size());
+
+        // create and queue the task
+        json responses = json::array();
+        server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
+        {
+            std::vector<server_task> tasks;
+            tasks.reserve(documents.size());
+            for (size_t i = 0; i < documents.size(); i++) {
+                auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
+                server_task task = server_task(SERVER_TASK_TYPE_RERANK);
+                task.id     = ctx_server.queue_tasks.get_new_id();
+                task.index  = i;
+                task.tokens = std::move(tmp);
+                tasks.push_back(std::move(task));
+            }
+            rd.post_tasks(std::move(tasks));
+        }
+
+        // wait for the results
+        auto all_results = rd.wait_for_all(req.should_stop);
+
+        // collect results
+        if (all_results.is_terminated) {
+            return res; // connection is closed
+        } else if (all_results.error) {
+            res->error(all_results.error->to_json());
+            return res;
+        } else {
+            for (auto & res : all_results.results) {
+                GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
+                responses.push_back(res->to_json());
+            }
+        }
+
+        // write JSON response
+        json root = format_response_rerank(
+            body,
+            responses,
+            is_tei_format,
+            documents,
+            top_n);
+
+        res->ok(root);
+        return res;
+    };
+
+    this->get_lora_adapters = [this](const server_http_req &) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        json result = json::array();
+        const auto & loras = ctx_server.params_base.lora_adapters;
+        for (size_t i = 0; i < loras.size(); ++i) {
+            auto & lora = loras[i];
+            json entry = {
+                {"id", i},
+                {"path", lora.path},
+                {"scale", lora.scale},
+                {"task_name", lora.task_name},
+                {"prompt_prefix", lora.prompt_prefix},
+            };
+            std::string alora_invocation_string = "";
+            const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
+            std::vector<llama_token> alora_invocation_tokens;
+            if (n_alora_tokens) {
+                const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
+                for (uint64_t i = 0; i < n_alora_tokens; ++i) {
+                    alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]);
+                    alora_invocation_tokens.push_back(alora_tokens[i]);
+                }
+                entry["alora_invocation_string"] = alora_invocation_string;
+                entry["alora_invocation_tokens"] = alora_invocation_tokens;
+            }
+            result.push_back(std::move(entry));
+        }
+        res->ok(result);
+        return res;
+    };
+
+    this->post_lora_adapters = [this](const server_http_req & req) {
+        auto res = std::make_unique<server_res_generator>(ctx_server);
+        const json body = json::parse(req.body);
+        if (!body.is_array()) {
+            res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+
+        int task_id = ctx_server.queue_tasks.get_new_id();
+        {
+            server_task task(SERVER_TASK_TYPE_SET_LORA);
+            task.id = task_id;
+            task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
+            ctx_server.queue_results.add_waiting_task_id(task_id);
+            ctx_server.queue_tasks.post(std::move(task));
+        }
+
+        // get the result
+        server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+        ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+        if (result->is_error()) {
+            res->error(result->to_json());
+            return res;
+        }
+
+        GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
+        res->ok(result->to_json());
+        return res;
+    };
+}
+
+std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const server_http_req & req, int id_slot) {
+    auto res = std::make_unique<server_res_generator>(ctx_server);
+    const json request_data = json::parse(req.body);
+    std::string filename = request_data.at("filename");
+    if (!fs_validate_filename(filename)) {
+        res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
+        return res;
+    }
+    std::string filepath = params.slot_save_path + filename;
+
+    int task_id = ctx_server.queue_tasks.get_new_id();
+    {
+        server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
+        task.id = task_id;
+        task.slot_action.slot_id  = id_slot;
+        task.slot_action.filename = filename;
+        task.slot_action.filepath = filepath;
+
+        // TODO: use server_response_reader
+        ctx_server.queue_results.add_waiting_task_id(task_id);
+        ctx_server.queue_tasks.post(std::move(task));
+    }
+
+    server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+    ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+    if (result->is_error()) {
+        res->error(result->to_json());
+        return res;
+    }
+
+    res->ok(result->to_json());
+    return res;
+}
+
+std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const server_http_req & req, int id_slot) {
+    auto res = std::make_unique<server_res_generator>(ctx_server);
+    const json request_data = json::parse(req.body);
+    std::string filename = request_data.at("filename");
+    if (!fs_validate_filename(filename)) {
+        res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
+        return res;
+    }
+    std::string filepath = params.slot_save_path + filename;
+
+    int task_id = ctx_server.queue_tasks.get_new_id();
+    {
+        server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
+        task.id = task_id;
+        task.slot_action.slot_id  = id_slot;
+        task.slot_action.filename = filename;
+        task.slot_action.filepath = filepath;
+
+        // TODO: use server_response_reader
+        ctx_server.queue_results.add_waiting_task_id(task_id);
+        ctx_server.queue_tasks.post(std::move(task));
+    }
+
+    server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+    ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+    if (result->is_error()) {
+        res->error(result->to_json());
+        return res;
+    }
+
+    GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
+    res->ok(result->to_json());
+    return res;
+}
+
+std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const server_http_req &, int id_slot) {
+    auto res = std::make_unique<server_res_generator>(ctx_server);
+    int task_id = ctx_server.queue_tasks.get_new_id();
+    {
+        server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
+        task.id = task_id;
+        task.slot_action.slot_id = id_slot;
+
+        // TODO: use server_response_reader
+        ctx_server.queue_results.add_waiting_task_id(task_id);
+        ctx_server.queue_tasks.post(std::move(task));
+    }
+
+    server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
+    ctx_server.queue_results.remove_waiting_task_id(task_id);
+
+    if (result->is_error()) {
+        res->error(result->to_json());
+        return res;
+    }
+
+    GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
+    res->ok(result->to_json());
+    return res;
+}
+
+std::unique_ptr<server_res_generator> server_routes::handle_embeddings_impl(const server_http_req & req, task_response_type res_type) {
+    auto res = std::make_unique<server_res_generator>(ctx_server);
+    if (!ctx_server.params_base.embedding) {
+        res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
+        return res;
+    }
+
+    if (res_type != TASK_RESPONSE_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
+        res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
+        return res;
+    }
+
+    const json body = json::parse(req.body);
+
+    // for the shape of input/content, see tokenize_input_prompts()
+    json prompt;
+    if (body.count("input") != 0) {
+        prompt = body.at("input");
+    } else if (body.contains("content")) {
+        res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible
+        prompt = body.at("content");
+    } else {
+        res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
+        return res;
+    }
+
+    bool use_base64 = false;
+    if (body.count("encoding_format") != 0) {
+        const std::string& format = body.at("encoding_format");
+        if (format == "base64") {
+            use_base64 = true;
+        } else if (format != "float") {
+            res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+    }
+
+    auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
+    for (const auto & tokens : tokenized_prompts) {
+        // this check is necessary for models that do not add BOS token to the input
+        if (tokens.empty()) {
+            res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
+            return res;
+        }
+    }
+
+    int embd_normalize = 2; // default to Euclidean/L2 norm
+    if (body.count("embd_normalize") != 0) {
+        embd_normalize = body.at("embd_normalize");
+        if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
+            SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
+        }
+    }
+
+    // create and queue the task
+    json responses = json::array();
+    server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
+    {
+        std::vector<server_task> tasks;
+        for (size_t i = 0; i < tokenized_prompts.size(); i++) {
+            server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
+
+            task.id     = ctx_server.queue_tasks.get_new_id();
+            task.index  = i;
+            task.tokens = std::move(tokenized_prompts[i]);
+
+            // OAI-compat
+            task.params.res_type = res_type;
+            task.params.embd_normalize = embd_normalize;
+
+            tasks.push_back(std::move(task));
+        }
+        rd.post_tasks(std::move(tasks));
+    }
+
+    // wait for the results
+    auto all_results = rd.wait_for_all(req.should_stop);
+
+    // collect results
+    if (all_results.is_terminated) {
+        return res; // connection is closed
+    } else if (all_results.error) {
+        res->error(all_results.error->to_json());
+        return res;
+    } else {
+        for (auto & res : all_results.results) {
+            GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
+            responses.push_back(res->to_json());
+        }
+    }
+
+    // write JSON response
+    json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD
+        ? format_embeddings_response_oaicompat(body, responses, use_base64)
+        : json(responses);
+    res->ok(root);
+    return res;
+}

+ 83 - 0
tools/server/server-context.h

@@ -0,0 +1,83 @@
+#include "server-http.h"
+#include "server-task.h"
+#include "server-queue.h"
+
+#include <nlohmann/json_fwd.hpp>
+
+#include <cstddef>
+#include <memory>
+
+struct server_context_impl; // private implementation
+
+struct server_context {
+    std::unique_ptr<server_context_impl> impl;
+
+    server_context();
+    ~server_context();
+
+    // initialize slots and server-related data
+    void init();
+
+    // load the model and initialize llama_context
+    // returns true on success
+    bool load_model(const common_params & params);
+
+    // this function will block main thread until termination
+    void start_loop();
+
+    // terminate main loop (will unblock start_loop)
+    void terminate();
+
+    // get the underlaying llama_context
+    llama_context * get_llama_context() const;
+
+    // get the underlaying queue_tasks and queue_results
+    // used by CLI application
+    std::pair<server_queue &, server_response &> get_queues();
+};
+
+
+// forward declarations
+struct server_res_generator;
+
+struct server_routes {
+    server_routes(const common_params & params, server_context & ctx_server, std::function<bool()> is_ready = []() { return true; })
+            : params(params), ctx_server(*ctx_server.impl), is_ready(is_ready) {
+        init_routes();
+    }
+
+    void init_routes();
+    // handlers using lambda function, so that they can capture `this` without `std::bind`
+    server_http_context::handler_t get_health;
+    server_http_context::handler_t get_metrics;
+    server_http_context::handler_t get_slots;
+    server_http_context::handler_t post_slots;
+    server_http_context::handler_t get_props;
+    server_http_context::handler_t post_props;
+    server_http_context::handler_t get_api_show;
+    server_http_context::handler_t post_infill;
+    server_http_context::handler_t post_completions;
+    server_http_context::handler_t post_completions_oai;
+    server_http_context::handler_t post_chat_completions;
+    server_http_context::handler_t post_anthropic_messages;
+    server_http_context::handler_t post_anthropic_count_tokens;
+    server_http_context::handler_t post_apply_template;
+    server_http_context::handler_t get_models;
+    server_http_context::handler_t post_tokenize;
+    server_http_context::handler_t post_detokenize;
+    server_http_context::handler_t post_embeddings;
+    server_http_context::handler_t post_embeddings_oai;
+    server_http_context::handler_t post_rerank;
+    server_http_context::handler_t get_lora_adapters;
+    server_http_context::handler_t post_lora_adapters;
+private:
+    // TODO: move these outside of server_routes?
+    std::unique_ptr<server_res_generator> handle_slots_save(const server_http_req & req, int id_slot);
+    std::unique_ptr<server_res_generator> handle_slots_restore(const server_http_req & req, int id_slot);
+    std::unique_ptr<server_res_generator> handle_slots_erase(const server_http_req &, int id_slot);
+    std::unique_ptr<server_res_generator> handle_embeddings_impl(const server_http_req & req, task_response_type res_type);
+
+    const common_params & params;
+    server_context_impl & ctx_server;
+    std::function<bool()> is_ready;
+};

+ 83 - 0
tools/server/server-queue.cpp

@@ -266,3 +266,86 @@ void server_response::terminate() {
     running = false;
     condition_results.notify_all();
 }
+
+//
+// server_response_reader
+//
+
+void server_response_reader::post_tasks(std::vector<server_task> && tasks) {
+    id_tasks = server_task::get_list_id(tasks);
+    queue_results.add_waiting_tasks(tasks);
+    queue_tasks.post(std::move(tasks));
+}
+
+bool server_response_reader::has_next() const {
+    return !cancelled && received_count < id_tasks.size();
+}
+
+// return nullptr if should_stop() is true before receiving a result
+// note: if one error is received, it will stop further processing and return error result
+server_task_result_ptr server_response_reader::next(const std::function<bool()> & should_stop) {
+    while (true) {
+        server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, polling_interval_seconds);
+        if (result == nullptr) {
+            // timeout, check stop condition
+            if (should_stop()) {
+                SRV_DBG("%s", "stopping wait for next result due to should_stop condition\n");
+                return nullptr;
+            }
+        } else {
+            if (result->is_error()) {
+                stop(); // cancel remaining tasks
+                SRV_DBG("%s", "received error result, stopping further processing\n");
+                return result;
+            }
+            if (result->is_stop()) {
+                received_count++;
+            }
+            return result;
+        }
+    }
+
+    // should not reach here
+}
+
+server_response_reader::batch_response server_response_reader::wait_for_all(const std::function<bool()> & should_stop) {
+    batch_response batch_res;
+    batch_res.results.resize(id_tasks.size());
+    while (has_next()) {
+        auto res = next(should_stop);
+        if (res == nullptr) {
+            batch_res.is_terminated = true;
+            return batch_res;
+        }
+        if (res->is_error()) {
+            batch_res.error = std::move(res);
+            return batch_res;
+        }
+        const size_t idx = res->get_index();
+        GGML_ASSERT(idx < batch_res.results.size() && "index out of range");
+        GGML_ASSERT(batch_res.results[idx] == nullptr && "duplicate result received");
+        batch_res.results[idx] = std::move(res);
+    }
+    return batch_res;
+}
+
+void server_response_reader::stop() {
+    queue_results.remove_waiting_task_ids(id_tasks);
+    if (has_next() && !cancelled) {
+        // if tasks is not finished yet, cancel them
+        cancelled = true;
+        std::vector<server_task> cancel_tasks;
+        cancel_tasks.reserve(id_tasks.size());
+        for (const auto & id_task : id_tasks) {
+            SRV_WRN("cancel task, id_task = %d\n", id_task);
+            server_task task(SERVER_TASK_TYPE_CANCEL);
+            task.id_target = id_task;
+            queue_results.remove_waiting_task_id(id_task);
+            cancel_tasks.push_back(std::move(task));
+        }
+        // push to beginning of the queue, so it has highest priority
+        queue_tasks.post(std::move(cancel_tasks), true);
+    } else {
+        SRV_DBG("%s", "all tasks already finished, no need to cancel\n");
+    }
+}

+ 36 - 0
tools/server/server-queue.h

@@ -108,3 +108,39 @@ public:
     // terminate the waiting loop
     void terminate();
 };
+
+// utility class to make working with server_queue and server_response easier
+// it provides a generator-like API for server responses
+// support pooling connection state and aggregating multiple results
+struct server_response_reader {
+    std::unordered_set<int> id_tasks;
+    server_queue & queue_tasks;
+    server_response & queue_results;
+    size_t received_count = 0;
+    bool cancelled = false;
+    int polling_interval_seconds;
+
+    // should_stop function will be called each polling_interval_seconds
+    server_response_reader(std::pair<server_queue &, server_response &> server_queues, int polling_interval_seconds)
+        : queue_tasks(server_queues.first), queue_results(server_queues.second), polling_interval_seconds(polling_interval_seconds) {}
+    ~server_response_reader() {
+        stop();
+    }
+
+    void post_tasks(std::vector<server_task> && tasks);
+    bool has_next() const;
+
+    // return nullptr if should_stop() is true before receiving a result
+    // note: if one error is received, it will stop further processing and return error result
+    server_task_result_ptr next(const std::function<bool()> & should_stop);
+
+    struct batch_response {
+        bool is_terminated = false; // if true, indicates that processing was stopped before all results were received
+        std::vector<server_task_result_ptr> results;
+        server_task_result_ptr error; // nullptr if no error
+    };
+    // aggregate multiple results
+    batch_response wait_for_all(const std::function<bool()> & should_stop);
+
+    void stop();
+};

Dosya farkı çok büyük olduğundan ihmal edildi
+ 4 - 3647
tools/server/server.cpp


Bu fark içinde çok fazla dosya değişikliği olduğu için bazı dosyalar gösterilmiyor