|
|
@@ -352,51 +352,71 @@ static json oaicompat_completion_params_parse(
|
|
|
// https://platform.openai.com/docs/api-reference/chat/create
|
|
|
llama_sampling_params default_sparams;
|
|
|
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
|
|
- llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
|
|
- llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
|
|
- llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
|
|
- llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
|
|
- llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
|
|
- llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
|
|
- llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
|
|
|
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
|
|
+ llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
|
|
|
+ llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
|
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
|
|
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
|
|
llama_params["stream"] = json_value(body, "stream", false);
|
|
|
- llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
|
|
- llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
|
|
- llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
|
|
- llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
|
|
- llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
|
|
- llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
|
|
- llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
|
|
- llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
|
|
- llama_params["n_keep"] = json_value(body, "n_keep", 0);
|
|
|
-
|
|
|
- if (body.contains("grammar")) {
|
|
|
- llama_params["grammar"] = json_value(body, "grammar", json::object());
|
|
|
- }
|
|
|
+ llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
|
|
+ llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
|
|
|
|
|
- if (body.contains("response_format")) {
|
|
|
- auto response_format = json_value(body, "response_format", json::object());
|
|
|
- if (response_format.contains("type")) {
|
|
|
- if (response_format["type"] == "json_object") {
|
|
|
- llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
|
|
- } else {
|
|
|
- throw std::runtime_error("response_format type not supported: " + response_format["type"].dump());
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ // Apply chat template to the list of messages
|
|
|
+ llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
|
|
|
|
|
- // Handle 'stop' field
|
|
|
+ // Handle "stop" field
|
|
|
if (body.contains("stop") && body["stop"].is_string()) {
|
|
|
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
|
|
} else {
|
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
|
}
|
|
|
+ // Some chat templates don't use EOS token to stop generation
|
|
|
+ // We must add their end sequences to list of stop words
|
|
|
+ llama_params["stop"].push_back("<|im_end|>"); // chatml
|
|
|
+ llama_params["stop"].push_back("<end_of_turn>"); // gemma
|
|
|
|
|
|
- // Ensure there is ChatML-specific end sequence among stop words
|
|
|
- llama_params["stop"].push_back("<|im_end|>");
|
|
|
+ // Handle "response_format" field
|
|
|
+ if (body.contains("response_format")) {
|
|
|
+ json response_format = json_value(body, "response_format", json::object());
|
|
|
+ std::string response_type = json_value(response_format, "type", std::string());
|
|
|
+ if (response_type == "json_object") {
|
|
|
+ llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
|
|
+ } else if (!response_type.empty() && response_type != "text") {
|
|
|
+ throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle "n" field
|
|
|
+ int n_choices = json_value(body, "n", 1);
|
|
|
+ if (n_choices != 1) {
|
|
|
+ throw std::runtime_error("Only one completion choice is allowed");
|
|
|
+ }
|
|
|
+
|
|
|
+ // Handle "logprobs" field
|
|
|
+ // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
|
|
+ if (body.contains("logprobs")) {
|
|
|
+ llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
|
|
+ } else if (body.contains("top_logprobs")) {
|
|
|
+ throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
|
|
+ }
|
|
|
+
|
|
|
+ // Params supported by OAI but unsupported by llama.cpp
|
|
|
+ static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
|
|
|
+ for (auto & param : unsupported_params) {
|
|
|
+ if (body.contains(param)) {
|
|
|
+ throw std::runtime_error("Unsupported param: " + param);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Copy remaining properties to llama_params
|
|
|
+ // This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
|
|
|
+ // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
|
|
+ for (const auto & item : body.items()) {
|
|
|
+ // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
|
+ if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
|
+ llama_params[item.key()] = item.value();
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
return llama_params;
|
|
|
}
|