|
|
@@ -749,6 +749,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEO_BERT:
|
|
|
+ {
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
|
|
+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
|
|
|
+
|
|
|
+ if (hparams.n_layer == 28) {
|
|
|
+ type = LLM_TYPE_250M;
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_BLOOM:
|
|
|
{
|
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
|
@@ -2212,6 +2222,32 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
|
|
|
}
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEO_BERT:
|
|
|
+ {
|
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
+
|
|
|
+ cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+ cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
|
|
|
+ cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
|
|
|
+
|
|
|
+ output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
|
+
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
+ auto & layer = layers[i];
|
|
|
+
|
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
|
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
+
|
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
|
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
|
|
+ }
|
|
|
+ } break;
|
|
|
case LLM_ARCH_JINA_BERT_V2:
|
|
|
{
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
|
|
|
@@ -6182,6 +6218,117 @@ struct llm_build_bert : public llm_graph_context {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+struct llm_build_neo_bert : public llm_graph_context {
|
|
|
+ llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
|
|
+
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+ ggml_tensor * inp_pos = build_inp_pos();
|
|
|
+
|
|
|
+ // construct input embeddings (token, type, position)
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+ cb(inpL, "inp_embd", -1);
|
|
|
+
|
|
|
+ auto * inp_attn = build_attn_inp_no_cache();
|
|
|
+
|
|
|
+ // iterate layers
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ ggml_tensor * cur = inpL;
|
|
|
+
|
|
|
+ ggml_tensor * Qcur;
|
|
|
+ ggml_tensor * Kcur;
|
|
|
+ ggml_tensor * Vcur;
|
|
|
+
|
|
|
+ // pre-norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
|
|
|
+ cb(cur, "wqkv", il);
|
|
|
+
|
|
|
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
|
|
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
|
|
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ // RoPE
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, nullptr,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ cur = build_attn(inp_attn, gf,
|
|
|
+ model.layers[il].wo, nullptr,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
|
+ cb(cur, "kqv_out", il);
|
|
|
+
|
|
|
+ if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // re-add the layer input
|
|
|
+ cur = ggml_add(ctx0, cur, inpL);
|
|
|
+
|
|
|
+ ggml_tensor * ffn_inp = cur;
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // pre-norm
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ cur = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up,
|
|
|
+ NULL, NULL, NULL, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down,
|
|
|
+ NULL, NULL, NULL,
|
|
|
+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
|
|
|
+
|
|
|
+ // attentions bypass the intermediate layer
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm_enc, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_embd", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
struct llm_build_bloom : public llm_graph_context {
|
|
|
llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
@@ -13595,6 +13742,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|
|
case LLM_ARCH_JINA_BERT_V2:
|
|
|
case LLM_ARCH_NOMIC_BERT:
|
|
|
case LLM_ARCH_NOMIC_BERT_MOE:
|
|
|
+ case LLM_ARCH_NEO_BERT:
|
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
|
{
|
|
|
res = nullptr;
|
|
|
@@ -13703,6 +13851,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_bert>(*this, params, gf);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_NEO_BERT:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_neo_bert>(*this, params, gf);
|
|
|
+ } break;
|
|
|
case LLM_ARCH_BLOOM:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_bloom>(*this, params, gf);
|
|
|
@@ -14082,6 +14234,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
|
case LLM_ARCH_CHAMELEON:
|
|
|
case LLM_ARCH_BAILINGMOE:
|
|
|
+ case LLM_ARCH_NEO_BERT:
|
|
|
case LLM_ARCH_ARCEE:
|
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|