|
|
@@ -0,0 +1,275 @@
|
|
|
+#include "llama-memory-hybrid-iswa.h"
|
|
|
+
|
|
|
+#include "llama-impl.h"
|
|
|
+#include "llama-model.h"
|
|
|
+#include "llama-context.h"
|
|
|
+
|
|
|
+//
|
|
|
+// llama_memory_hybrid_iswa
|
|
|
+//
|
|
|
+
|
|
|
+llama_memory_hybrid_iswa::llama_memory_hybrid_iswa(
|
|
|
+ const llama_model & model,
|
|
|
+ /* attn */
|
|
|
+ ggml_type type_k,
|
|
|
+ ggml_type type_v,
|
|
|
+ bool v_trans,
|
|
|
+ bool swa_full,
|
|
|
+ uint32_t kv_size,
|
|
|
+ uint32_t n_ubatch,
|
|
|
+ uint32_t n_pad,
|
|
|
+ /* recurrent */
|
|
|
+ ggml_type type_r,
|
|
|
+ ggml_type type_s,
|
|
|
+ uint32_t rs_size,
|
|
|
+ /* common */
|
|
|
+ uint32_t n_seq_max,
|
|
|
+ bool offload,
|
|
|
+ bool unified,
|
|
|
+ /* layer filters */
|
|
|
+ const layer_filter_cb & filter_attn,
|
|
|
+ const layer_filter_cb & filter_recr) :
|
|
|
+ hparams(model.hparams),
|
|
|
+ mem_attn(new llama_kv_cache_iswa(
|
|
|
+ model,
|
|
|
+ type_k,
|
|
|
+ type_v,
|
|
|
+ v_trans,
|
|
|
+ offload,
|
|
|
+ swa_full,
|
|
|
+ unified,
|
|
|
+ kv_size,
|
|
|
+ n_seq_max,
|
|
|
+ n_ubatch,
|
|
|
+ n_pad,
|
|
|
+ filter_attn == nullptr ?
|
|
|
+ [&](int32_t il) { return !hparams.is_recurrent(il); }
|
|
|
+ : filter_attn,
|
|
|
+ nullptr
|
|
|
+ )),
|
|
|
+ mem_recr(new llama_memory_recurrent(
|
|
|
+ model,
|
|
|
+ type_r,
|
|
|
+ type_s,
|
|
|
+ offload,
|
|
|
+ rs_size,
|
|
|
+ n_seq_max,
|
|
|
+ filter_recr == nullptr ?
|
|
|
+ [&](int32_t il) { return hparams.is_recurrent(il); }
|
|
|
+ : filter_recr
|
|
|
+ )) {}
|
|
|
+
|
|
|
+llama_memory_context_ptr llama_memory_hybrid_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
|
|
+ do {
|
|
|
+ balloc.split_reset();
|
|
|
+
|
|
|
+ // follow the recurrent pattern for creating the ubatch splits
|
|
|
+ std::vector<llama_ubatch> ubatches;
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ llama_ubatch ubatch;
|
|
|
+
|
|
|
+ if (embd_all) {
|
|
|
+ // if all tokens are output, split by sequence
|
|
|
+ ubatch = balloc.split_seq(n_ubatch);
|
|
|
+ } else {
|
|
|
+ // TODO: non-sequential equal split can be done if using unified KV cache
|
|
|
+ // for simplicity, we always use sequential equal split for now
|
|
|
+ ubatch = balloc.split_equal(n_ubatch, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (ubatch.n_tokens == 0) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ ubatches.push_back(std::move(ubatch)); // NOLINT
|
|
|
+ }
|
|
|
+
|
|
|
+ if (balloc.get_n_used() < balloc.get_n_tokens()) {
|
|
|
+ // failed to find a suitable split
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ // prepare the recurrent batches first
|
|
|
+ if (!mem_recr->prepare(ubatches)) {
|
|
|
+ // TODO: will the recurrent cache be in an undefined context at this point?
|
|
|
+ LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
+ }
|
|
|
+
|
|
|
+ // prepare the attention cache (iswa version returns both base and swa slot infos)
|
|
|
+ auto sinfos_base = mem_attn->get_base()->prepare(ubatches);
|
|
|
+ if (sinfos_base.empty()) {
|
|
|
+ LLAMA_LOG_ERROR("%s: failed to prepare attention base ubatches\n", __func__);
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
+ }
|
|
|
+
|
|
|
+ auto sinfos_swa = mem_attn->get_swa()->prepare(ubatches);
|
|
|
+ if (sinfos_swa.empty()) {
|
|
|
+ LLAMA_LOG_ERROR("%s: failed to prepare attention swa ubatches\n", __func__);
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
+ }
|
|
|
+
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(
|
|
|
+ this, std::move(sinfos_base), std::move(sinfos_swa), std::move(ubatches));
|
|
|
+ } while(false);
|
|
|
+
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_context_ptr llama_memory_hybrid_iswa::init_full() {
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(this);
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_context_ptr llama_memory_hybrid_iswa::init_update(llama_context * lctx, bool optimize) {
|
|
|
+ return std::make_unique<llama_memory_hybrid_iswa_context>(this, lctx, optimize);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_memory_hybrid_iswa::get_can_shift() const {
|
|
|
+ // Shifting is trivially supported for recurrent
|
|
|
+ return mem_attn->get_can_shift();
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::clear(bool data) {
|
|
|
+ mem_attn->clear(data);
|
|
|
+ mem_recr->clear(data);
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_memory_hybrid_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
|
+ // Try removing from the recurrent cache first since it may fail. If it does
|
|
|
+ // fail, the cache will not have been mutated.
|
|
|
+ if (!mem_recr->seq_rm(seq_id, p0, p1)) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ return mem_attn->seq_rm(seq_id, p0, p1);
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
|
+ mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
|
+ mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::seq_keep(llama_seq_id seq_id) {
|
|
|
+ mem_attn->seq_keep(seq_id);
|
|
|
+ mem_recr->seq_keep(seq_id);
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
|
+ mem_attn->seq_add(seq_id, p0, p1, shift);
|
|
|
+ mem_recr->seq_add(seq_id, p0, p1, shift);
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
|
+ mem_attn->seq_div(seq_id, p0, p1, d);
|
|
|
+ mem_recr->seq_div(seq_id, p0, p1, d);
|
|
|
+}
|
|
|
+
|
|
|
+llama_pos llama_memory_hybrid_iswa::seq_pos_min(llama_seq_id seq_id) const {
|
|
|
+ // the min of the total cache is the max of the two caches' min values
|
|
|
+ return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
|
|
|
+}
|
|
|
+
|
|
|
+llama_pos llama_memory_hybrid_iswa::seq_pos_max(llama_seq_id seq_id) const {
|
|
|
+ // the max of the total cache is the min of the two caches' max values
|
|
|
+ return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
|
|
|
+}
|
|
|
+
|
|
|
+std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid_iswa::memory_breakdown() const {
|
|
|
+ std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
|
|
|
+ for (const auto & buft_size : mem_recr->memory_breakdown()) {
|
|
|
+ mb[buft_size.first] += buft_size.second;
|
|
|
+ }
|
|
|
+ return mb;
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
|
|
|
+ mem_attn->state_write(io, seq_id, flags);
|
|
|
+ mem_recr->state_write(io, seq_id, flags);
|
|
|
+}
|
|
|
+
|
|
|
+void llama_memory_hybrid_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
|
|
|
+ mem_attn->state_read(io, seq_id, flags);
|
|
|
+ mem_recr->state_read(io, seq_id, flags);
|
|
|
+}
|
|
|
+
|
|
|
+llama_kv_cache_iswa * llama_memory_hybrid_iswa::get_mem_attn() const {
|
|
|
+ return mem_attn.get();
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_recurrent * llama_memory_hybrid_iswa::get_mem_recr() const {
|
|
|
+ return mem_recr.get();
|
|
|
+}
|
|
|
+
|
|
|
+//
|
|
|
+// llama_memory_hybrid_iswa_context
|
|
|
+//
|
|
|
+
|
|
|
+llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(llama_memory_status status) : status(status) {}
|
|
|
+
|
|
|
+llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(llama_memory_hybrid_iswa * mem) :
|
|
|
+ ctx_attn(mem->get_mem_attn()->init_full()),
|
|
|
+ ctx_recr(mem->get_mem_recr()->init_full()),
|
|
|
+ status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(
|
|
|
+ llama_memory_hybrid_iswa * mem,
|
|
|
+ llama_context * lctx,
|
|
|
+ bool optimize) :
|
|
|
+ ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
|
|
|
+ ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
|
|
|
+ status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_hybrid_iswa_context::llama_memory_hybrid_iswa_context(
|
|
|
+ llama_memory_hybrid_iswa * mem,
|
|
|
+ slot_info_vec_t sinfos_base,
|
|
|
+ slot_info_vec_t sinfos_swa,
|
|
|
+ std::vector<llama_ubatch> ubatches) :
|
|
|
+ ubatches(std::move(ubatches)),
|
|
|
+ // note: here we copy the ubatches. not sure if this is ideal
|
|
|
+ ctx_attn(new llama_kv_cache_iswa_context(mem->get_mem_attn(), std::move(sinfos_base), std::move(sinfos_swa), this->ubatches)),
|
|
|
+ ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
|
|
|
+ status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_memory_hybrid_iswa_context::next() {
|
|
|
+ assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
+
|
|
|
+ ctx_attn->next();
|
|
|
+ ctx_recr->next();
|
|
|
+
|
|
|
+ if (++i_next >= ubatches.size()) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+bool llama_memory_hybrid_iswa_context::apply() {
|
|
|
+ assert(!llama_memory_status_is_fail(status));
|
|
|
+
|
|
|
+ bool res = true;
|
|
|
+
|
|
|
+ res = res & ctx_attn->apply();
|
|
|
+ res = res & ctx_recr->apply();
|
|
|
+
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+llama_memory_status llama_memory_hybrid_iswa_context::get_status() const {
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+const llama_ubatch & llama_memory_hybrid_iswa_context::get_ubatch() const {
|
|
|
+ assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
+ return ubatches[i_next];
|
|
|
+}
|
|
|
+
|
|
|
+const llama_kv_cache_iswa_context * llama_memory_hybrid_iswa_context::get_attn() const {
|
|
|
+ return static_cast<const llama_kv_cache_iswa_context *>(ctx_attn.get());
|
|
|
+}
|
|
|
+
|
|
|
+const llama_memory_recurrent_context * llama_memory_hybrid_iswa_context::get_recr() const {
|
|
|
+ return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
|
|
|
+}
|