|
|
@@ -1,6 +1,7 @@
|
|
|
#version 450
|
|
|
|
|
|
-#extension GL_EXT_shader_16bit_storage : require
|
|
|
+#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
|
|
|
+#extension GL_EXT_control_flow_attributes : enable
|
|
|
|
|
|
layout (push_constant) uniform parameter
|
|
|
{
|
|
|
@@ -11,14 +12,13 @@ layout (push_constant) uniform parameter
|
|
|
float m0;
|
|
|
float m1;
|
|
|
uint n_head_log2;
|
|
|
+ uint nrows_x;
|
|
|
} p;
|
|
|
|
|
|
#include "types.comp"
|
|
|
|
|
|
-#extension GL_EXT_control_flow_attributes : enable
|
|
|
-#define BLOCK_SIZE 512
|
|
|
-
|
|
|
-layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
|
|
+layout(constant_id = 0) const uint BLOCK_SIZE = 32;
|
|
|
+layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
|
|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
|
|
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
|
|
@@ -26,11 +26,18 @@ layout (binding = 2) buffer D {D_TYPE data_d[];};
|
|
|
|
|
|
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
|
|
|
|
|
-void main() {
|
|
|
+// num_iters is the number of BLOCK_SIZE loop iterations we need to iterate
|
|
|
+// over all the columns. The main function tries to pass a constant here,
|
|
|
+// as if it were a template function, to allow unrolling.
|
|
|
+void soft_max(uint num_iters) {
|
|
|
const uint tid = gl_LocalInvocationID.x;
|
|
|
const uint rowx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
|
|
|
const uint rowy = rowx % p.KY;
|
|
|
|
|
|
+ if (rowx >= p.nrows_x) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
float slope = 1.0f;
|
|
|
|
|
|
// ALiBi
|
|
|
@@ -46,19 +53,37 @@ void main() {
|
|
|
// Find max
|
|
|
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
|
|
|
|
|
|
- [[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
|
|
+ // Cache values while we compute the max, so we don't need to read them
|
|
|
+ // again when we're ready to compute exp(x-max).
|
|
|
+ const uint DATA_CACHE_SIZE = 16;
|
|
|
+ FLOAT_TYPE data_cache[DATA_CACHE_SIZE];
|
|
|
+
|
|
|
+ [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
|
|
const uint col = col0 + tid;
|
|
|
|
|
|
- if (col >= p.KX) {
|
|
|
- break;
|
|
|
+ FLOAT_TYPE a = FLOAT_TYPE(0);
|
|
|
+ if (col < p.KX) {
|
|
|
+ a = data_a[rowx * p.KX + col];
|
|
|
}
|
|
|
|
|
|
- max_val = max(max_val, FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)));
|
|
|
+ FLOAT_TYPE b = FLOAT_TYPE(0);
|
|
|
+ if (p.KY > 0 && col < p.KX) {
|
|
|
+ b = data_b[rowy * p.KX + col];
|
|
|
+ }
|
|
|
+
|
|
|
+ FLOAT_TYPE v = a * p.scale + slope * b;
|
|
|
+
|
|
|
+ max_val = max(max_val, v);
|
|
|
+
|
|
|
+ if (idx < DATA_CACHE_SIZE) {
|
|
|
+ data_cache[idx] = v;
|
|
|
+ }
|
|
|
}
|
|
|
- vals[tid] = max_val;
|
|
|
|
|
|
+ // reduce across the workgroup
|
|
|
+ vals[tid] = max_val;
|
|
|
barrier();
|
|
|
- [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
|
|
+ [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
|
|
if (tid < s) {
|
|
|
vals[tid] = max(vals[tid], vals[tid + s]);
|
|
|
}
|
|
|
@@ -68,39 +93,80 @@ void main() {
|
|
|
max_val = vals[0];
|
|
|
barrier();
|
|
|
|
|
|
- // Sum up values
|
|
|
- vals[tid] = FLOAT_TYPE(0.0f);
|
|
|
+ FLOAT_TYPE sum = FLOAT_TYPE(0.0f);
|
|
|
|
|
|
- [[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
|
|
+ // Compute sum{exp(x - max)}
|
|
|
+ [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
|
|
const uint col = col0 + tid;
|
|
|
|
|
|
if (col >= p.KX) {
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
+ // compute exp(a*scale+b*slope), add it to sum, and cache the new value
|
|
|
+ // in data_cache if possible.
|
|
|
const uint i = rowx * p.KX + col;
|
|
|
- const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
|
|
- vals[tid] += val;
|
|
|
- data_d[i] = D_TYPE(val);
|
|
|
+ FLOAT_TYPE val;
|
|
|
+ if (idx < DATA_CACHE_SIZE) {
|
|
|
+ val = exp(data_cache[idx] - max_val);
|
|
|
+ } else {
|
|
|
+ val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
|
|
+ }
|
|
|
+ sum += val;
|
|
|
+ if (idx < DATA_CACHE_SIZE) {
|
|
|
+ data_cache[idx] = val;
|
|
|
+ } else {
|
|
|
+ data_d[i] = D_TYPE(val);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
+ // reduce across the workgroup
|
|
|
+ vals[tid] = sum;
|
|
|
barrier();
|
|
|
- [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
|
|
+ [[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
|
|
if (tid < s) {
|
|
|
vals[tid] += vals[tid + s];
|
|
|
}
|
|
|
barrier();
|
|
|
}
|
|
|
+ sum = vals[0];
|
|
|
|
|
|
- const D_TYPE divisor = D_TYPE(vals[0]);
|
|
|
+ FLOAT_TYPE rcpdivisor = 1.0/sum;
|
|
|
|
|
|
- [[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
|
|
+ [[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
|
|
|
const uint col = col0 + tid;
|
|
|
|
|
|
if (col >= p.KX) {
|
|
|
- break;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (idx < DATA_CACHE_SIZE) {
|
|
|
+ data_d[rowx*p.KX + col] = D_TYPE(data_cache[idx] * rcpdivisor);
|
|
|
+ } else {
|
|
|
+ data_d[rowx*p.KX + col] *= D_TYPE(rcpdivisor);
|
|
|
}
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- data_d[rowx*p.KX + col] /= divisor;
|
|
|
+void main() {
|
|
|
+ // instantiate the soft_max function for several different
|
|
|
+ // dimensions, to allow loop unrolling
|
|
|
+ uint num_blocks = (p.KX + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
+ if (num_blocks > 32) {
|
|
|
+ soft_max(num_blocks);
|
|
|
+ } else if (num_blocks > 16) {
|
|
|
+ soft_max(32);
|
|
|
+ } else if (num_blocks > 8) {
|
|
|
+ soft_max(16);
|
|
|
+ } else if (num_blocks > 4) {
|
|
|
+ soft_max(8);
|
|
|
+ } else if (num_blocks == 4) {
|
|
|
+ soft_max(4);
|
|
|
+ } else if (num_blocks == 3) {
|
|
|
+ soft_max(3);
|
|
|
+ } else if (num_blocks == 2) {
|
|
|
+ soft_max(2);
|
|
|
+ } else if (num_blocks == 1) {
|
|
|
+ soft_max(1);
|
|
|
}
|
|
|
}
|