|
|
@@ -23,7 +23,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
|
import gguf
|
|
|
|
|
|
-from convert import LlamaHfVocab
|
|
|
+from convert import LlamaHfVocab, permute
|
|
|
|
|
|
|
|
|
###### MODEL DEFINITIONS ######
|
|
|
@@ -1052,12 +1052,72 @@ class StableLMModel(Model):
|
|
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
|
|
|
|
|
|
|
|
-@Model.register("MixtralForCausalLM")
|
|
|
-class MixtralModel(Model):
|
|
|
+@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
|
|
+class LlamaModel(Model):
|
|
|
model_arch = gguf.MODEL_ARCH.LLAMA
|
|
|
|
|
|
def set_vocab(self):
|
|
|
- self._set_vocab_sentencepiece()
|
|
|
+ try:
|
|
|
+ self. _set_vocab_sentencepiece()
|
|
|
+ except FileNotFoundError:
|
|
|
+ self._set_vocab_llama_hf()
|
|
|
+
|
|
|
+ def set_gguf_parameters(self):
|
|
|
+ super().set_gguf_parameters()
|
|
|
+ hparams = self.hparams
|
|
|
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
|
|
+ self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
|
|
+
|
|
|
+ # Same as super class, but permuting q_proj, k_proj
|
|
|
+ def write_tensors(self):
|
|
|
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
|
|
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
|
|
+ n_head = self.hparams.get("num_attention_heads")
|
|
|
+ n_kv_head = self.hparams.get("num_key_value_heads")
|
|
|
+ for name, data_torch in self.get_tensors():
|
|
|
+ # we don't need these
|
|
|
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
|
|
+ continue
|
|
|
+
|
|
|
+ old_dtype = data_torch.dtype
|
|
|
+
|
|
|
+ # convert any unsupported data types to float32
|
|
|
+ if data_torch.dtype not in (torch.float16, torch.float32):
|
|
|
+ data_torch = data_torch.to(torch.float32)
|
|
|
+
|
|
|
+ data = data_torch.numpy()
|
|
|
+
|
|
|
+ if name.endswith("q_proj.weight"):
|
|
|
+ data = permute(data, n_head, n_head)
|
|
|
+ if name.endswith("k_proj.weight"):
|
|
|
+ data = permute(data, n_head, n_kv_head)
|
|
|
+
|
|
|
+ data = data.squeeze()
|
|
|
+
|
|
|
+ # map tensor names
|
|
|
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
|
+ if new_name is None:
|
|
|
+ print(f"Can not map tensor {name!r}")
|
|
|
+ sys.exit()
|
|
|
+
|
|
|
+ n_dims = len(data.shape)
|
|
|
+ data_dtype = data.dtype
|
|
|
+
|
|
|
+ # if f32 desired, convert any float16 to float32
|
|
|
+ if self.ftype == 0 and data_dtype == np.float16:
|
|
|
+ data = data.astype(np.float32)
|
|
|
+
|
|
|
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
|
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
|
+ data = data.astype(np.float32)
|
|
|
+
|
|
|
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
|
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
|
+ data = data.astype(np.float16)
|
|
|
+
|
|
|
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
|
|
+
|
|
|
+ self.gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
|
|
|
@Model.register("GrokForCausalLM")
|