|
|
@@ -0,0 +1,185 @@
|
|
|
+#include "common.h"
|
|
|
+#include "llama.h"
|
|
|
+#include "ggml.h"
|
|
|
+
|
|
|
+#include <cstdio>
|
|
|
+#include <random>
|
|
|
+#include <string>
|
|
|
+#include <tuple>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+/**
|
|
|
+ * This the arbitrary data which will be passed to each callback.
|
|
|
+ * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
|
|
|
+ */
|
|
|
+struct callback_data {
|
|
|
+ std::vector<uint8_t> data;
|
|
|
+};
|
|
|
+
|
|
|
+static std::string ggml_ne_string(const ggml_tensor * t) {
|
|
|
+ std::string str;
|
|
|
+ for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
|
|
+ str += std::to_string(t->ne[i]);
|
|
|
+ if (i + 1 < GGML_MAX_DIMS) {
|
|
|
+ str += ", ";
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return str;
|
|
|
+}
|
|
|
+
|
|
|
+static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
|
|
+ float sum = 0;
|
|
|
+ for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
|
|
+ printf(" [\n");
|
|
|
+ for (int64_t i2 = 0; i2 < ne[2] && i2 < n; i2++) {
|
|
|
+ printf(" [\n");
|
|
|
+ for (int64_t i1 = 0; i1 < ne[1] && i1 < n; i1++) {
|
|
|
+ printf(" [");
|
|
|
+ for (int64_t i0 = 0; i0 < ne[0] && i0 < n; i0++) {
|
|
|
+ size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
|
|
+ float v;
|
|
|
+ if (type == GGML_TYPE_F16) {
|
|
|
+ v = ggml_fp16_to_fp32(*(ggml_fp16_t *) data + i);
|
|
|
+ } else if (type == GGML_TYPE_F32) {
|
|
|
+ v = *(float *) data + i;
|
|
|
+ } else if (type == GGML_TYPE_I32) {
|
|
|
+ v = (float) *(int32_t *) data + i;
|
|
|
+ } else if (type == GGML_TYPE_I16) {
|
|
|
+ v = (float) *(int16_t *) data + i;
|
|
|
+ } else if (type == GGML_TYPE_I8) {
|
|
|
+ v = (float) *(int8_t *) data + i;
|
|
|
+ } else {
|
|
|
+ GGML_ASSERT(false);
|
|
|
+ }
|
|
|
+ printf("%8.4f", v);
|
|
|
+ sum += v;
|
|
|
+ if (i0 < ne[0] - 1 && i0 < n - 1) printf(", ");
|
|
|
+ }
|
|
|
+ if (ne[0] > n) printf(", ...");
|
|
|
+ printf("],\n");
|
|
|
+ }
|
|
|
+ if (ne[1] > n) printf(" ...\n");
|
|
|
+ printf(" ],\n");
|
|
|
+ }
|
|
|
+ if (ne[2] > n) printf(" ...\n");
|
|
|
+ printf(" ]\n");
|
|
|
+ printf(" sum = %f\n", sum);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * GGML operations callback during the graph execution.
|
|
|
+ *
|
|
|
+ * @param t current tensor
|
|
|
+ * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
|
|
+ * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
|
|
|
+ * see ggml_backend_sched_eval_callback
|
|
|
+ * @param user_data user data to pass at each call back
|
|
|
+ * @return true to receive data or continue the graph, false otherwise
|
|
|
+ */
|
|
|
+static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|
|
+ auto * cb_data = (callback_data *) user_data;
|
|
|
+
|
|
|
+ const struct ggml_tensor * src0 = t->src[0];
|
|
|
+ const struct ggml_tensor * src1 = t->src[1];
|
|
|
+
|
|
|
+ if (ask) {
|
|
|
+ return true; // Always retrieve data
|
|
|
+ }
|
|
|
+
|
|
|
+ char src1_str[128] = {0};
|
|
|
+ if (src1) {
|
|
|
+ sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
|
|
+ t->name, ggml_type_name(t->type), ggml_op_name(t->op),
|
|
|
+ src0->name, ggml_ne_string(src0).c_str(),
|
|
|
+ src1 ? src1_str : "",
|
|
|
+ ggml_ne_string(t).c_str());
|
|
|
+
|
|
|
+
|
|
|
+ // copy the data from the GPU memory if needed
|
|
|
+ const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
|
|
+
|
|
|
+ if (!is_host) {
|
|
|
+ auto n_bytes = ggml_nbytes(t);
|
|
|
+ cb_data->data.resize(n_bytes);
|
|
|
+ ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!ggml_is_quantized(t->type)) {
|
|
|
+ uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
|
|
|
+ ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static bool run(llama_context * ctx, const gpt_params & params) {
|
|
|
+ const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
+
|
|
|
+ std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
+
|
|
|
+ if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
|
|
+ fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+int main(int argc, char ** argv) {
|
|
|
+
|
|
|
+ callback_data cb_data;
|
|
|
+
|
|
|
+ gpt_params params;
|
|
|
+ if (!gpt_params_parse(argc, argv, params)) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ print_build_info();
|
|
|
+
|
|
|
+ std::mt19937 rng(params.seed);
|
|
|
+ if (params.random_prompt) {
|
|
|
+ params.prompt = gpt_random_prompt(rng);
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_backend_init();
|
|
|
+ llama_numa_init(params.numa);
|
|
|
+
|
|
|
+ // pass the callback to the backend scheduler
|
|
|
+ // it will be executed for each node during the graph computation
|
|
|
+ params.cb_eval = ggml_debug;
|
|
|
+ params.cb_eval_user_data = &cb_data;
|
|
|
+ params.warmup = false;
|
|
|
+
|
|
|
+ // init
|
|
|
+ llama_model * model;
|
|
|
+ llama_context * ctx;
|
|
|
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
|
+ if (model == nullptr || ctx == nullptr) {
|
|
|
+ fprintf(stderr, "%s : failed to init\n", __func__);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // print system information
|
|
|
+ {
|
|
|
+ fprintf(stderr, "\n");
|
|
|
+ fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ bool OK = run(ctx, params);
|
|
|
+ if (!OK) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ llama_print_timings(ctx);
|
|
|
+
|
|
|
+ llama_free(ctx);
|
|
|
+ llama_free_model(model);
|
|
|
+
|
|
|
+ llama_backend_free();
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|