|
@@ -7127,7 +7127,7 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
|
|
|
} break;
|
|
} break;
|
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT:
|
|
|
{
|
|
{
|
|
|
- ggml_tensor * b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512);
|
|
|
|
|
|
|
+ ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
|
|
|
op_tensor = ggml_mul_mat(ctx, w, b);
|
|
op_tensor = ggml_mul_mat(ctx, w, b);
|
|
|
} break;
|
|
} break;
|
|
|
case GGML_OP_MUL_MAT_ID:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
@@ -7167,18 +7167,38 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
|
|
|
} break;
|
|
} break;
|
|
|
case GGML_OP_SSM_CONV:
|
|
case GGML_OP_SSM_CONV:
|
|
|
{
|
|
{
|
|
|
- // TODO: ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
|
|
|
|
|
- op_tensor = ggml_ssm_conv(ctx, nullptr, w);
|
|
|
|
|
|
|
+ // FIXME
|
|
|
|
|
+ ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
|
|
|
|
|
+ op_tensor = ggml_ssm_conv(ctx, conv_x, w);
|
|
|
} break;
|
|
} break;
|
|
|
case GGML_OP_SSM_SCAN:
|
|
case GGML_OP_SSM_SCAN:
|
|
|
{
|
|
{
|
|
|
- // TODO: ggml_ssm_scan(ctx, ssm, x, dt, model.layers[il].ssm_a, B, C);
|
|
|
|
|
- op_tensor = ggml_ssm_scan(ctx, nullptr, nullptr, nullptr, w, nullptr, nullptr);
|
|
|
|
|
|
|
+ // FIXME
|
|
|
|
|
+ const int64_t d_state = w->ne[0];
|
|
|
|
|
+ const int64_t d_inner = w->ne[1];
|
|
|
|
|
+ const int64_t n_seq_tokens = 512;
|
|
|
|
|
+ const int64_t n_seqs = 1;
|
|
|
|
|
+ ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
|
|
|
|
|
+ ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
|
|
|
|
|
+ ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
|
|
|
|
|
+ ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
|
|
|
|
|
+ ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
|
|
|
|
|
+ op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
|
|
|
} break;
|
|
} break;
|
|
|
case GGML_OP_RWKV_WKV:
|
|
case GGML_OP_RWKV_WKV:
|
|
|
{
|
|
{
|
|
|
- // TODO: ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
|
|
|
|
|
- op_tensor = ggml_rwkv_wkv(ctx, nullptr, nullptr, nullptr, w, nullptr, nullptr);
|
|
|
|
|
|
|
+ // FIXME
|
|
|
|
|
+ const int64_t S = 123;
|
|
|
|
|
+ const int64_t H = 123;
|
|
|
|
|
+ const int64_t n_tokens = 123;
|
|
|
|
|
+ const int64_t n_seqs = 123;
|
|
|
|
|
+ ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, 1, H, n_tokens);
|
|
|
|
|
+ ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
|
|
|
|
|
+ ggml_tensor * r = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
|
|
|
|
|
+ ggml_tensor * tf = w;
|
|
|
|
|
+ ggml_tensor * td = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
|
|
|
|
|
+ ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
|
|
|
|
|
+ op_tensor = ggml_rwkv_wkv(ctx, k, v, r, tf, td, state);
|
|
|
} break;
|
|
} break;
|
|
|
default:
|
|
default:
|
|
|
GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
|
|
GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
|
|
@@ -7453,7 +7473,7 @@ static bool llm_load_tensors(
|
|
|
|
|
|
|
|
// tensors with "bias" suffix are always used with GGML_OP_ADD
|
|
// tensors with "bias" suffix are always used with GGML_OP_ADD
|
|
|
ggml_op op;
|
|
ggml_op op;
|
|
|
- bool bias = strcmp(tn.suffix, "bias") == 0;
|
|
|
|
|
|
|
+ bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
|
|
|
if (bias) {
|
|
if (bias) {
|
|
|
op = GGML_OP_ADD;
|
|
op = GGML_OP_ADD;
|
|
|
} else {
|
|
} else {
|
|
@@ -19681,7 +19701,7 @@ struct llama_context * llama_new_context_with_model(
|
|
|
int n_nodes_tg = ggml_graph_n_nodes(gf_tg);
|
|
int n_nodes_tg = ggml_graph_n_nodes(gf_tg);
|
|
|
|
|
|
|
|
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
|
|
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
|
|
|
- gf_pp = llama_build_graph(*ctx, ubatch_pp, false);
|
|
|
|
|
|
|
+ gf_pp = llama_build_graph(*ctx, ubatch_pp, true);
|
|
|
if (!ggml_backend_sched_reserve(ctx->sched, gf_pp)) {
|
|
if (!ggml_backend_sched_reserve(ctx->sched, gf_pp)) {
|
|
|
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
|
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
|
|
llama_free(ctx);
|
|
llama_free(ctx);
|