|
|
@@ -696,18 +696,20 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
|
|
return a;
|
|
|
}
|
|
|
|
|
|
-//static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|
|
-//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
|
-//#pragma unroll
|
|
|
-// for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
-// a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
|
|
-// }
|
|
|
-// return a;
|
|
|
-//#else
|
|
|
-// (void) a;
|
|
|
-// NO_DEVICE_CODE;
|
|
|
-//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
|
-//}
|
|
|
+#ifdef GGML_CUDA_F16
|
|
|
+static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|
|
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
|
+#pragma unroll
|
|
|
+ for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
+ a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
|
|
+ }
|
|
|
+ return a;
|
|
|
+#else
|
|
|
+ (void) a;
|
|
|
+ NO_DEVICE_CODE;
|
|
|
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
|
+}
|
|
|
+#endif // GGML_CUDA_F16
|
|
|
|
|
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
|
|
#pragma unroll
|
|
|
@@ -2521,10 +2523,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|
|
#endif
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
dst[row] = tmp;
|
|
|
@@ -2625,10 +2624,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|
|
#endif
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
dst[row] = tmp;
|
|
|
@@ -2761,10 +2757,7 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|
|
#endif
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (tid == 0) {
|
|
|
dst[row] = tmp;
|
|
|
@@ -2877,10 +2870,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|
|
#endif
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
dst[row] = tmp;
|
|
|
@@ -2987,10 +2977,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|
|
#endif
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (tid == 0) {
|
|
|
dst[row] = tmp;
|
|
|
@@ -3025,11 +3012,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
|
|
float amax = fabsf(xi);
|
|
|
float sum = xi;
|
|
|
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
|
|
|
- sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
|
|
|
- }
|
|
|
+ amax = warp_reduce_max(amax);
|
|
|
+ sum = warp_reduce_sum(sum);
|
|
|
|
|
|
const float d = amax / 127;
|
|
|
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
|
|
@@ -6222,10 +6206,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
|
|
|
}
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (tid == 0) {
|
|
|
#ifdef GGML_CUDA_F16
|
|
|
@@ -6275,10 +6256,7 @@ static __global__ void mul_mat_p021_f16_f32(
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
dst[idst] = tmp;
|
|
|
@@ -6321,10 +6299,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|
|
}
|
|
|
|
|
|
// sum up partial sums and write back result
|
|
|
-#pragma unroll
|
|
|
- for (int mask = 16; mask > 0; mask >>= 1) {
|
|
|
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
|
|
|
- }
|
|
|
+ tmp = warp_reduce_sum(tmp);
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
dst[idst] = tmp;
|