|
@@ -211,6 +211,7 @@ enum llm_arch {
|
|
|
LLM_ARCH_INTERNLM2,
|
|
LLM_ARCH_INTERNLM2,
|
|
|
LLM_ARCH_MINICPM,
|
|
LLM_ARCH_MINICPM,
|
|
|
LLM_ARCH_GEMMA,
|
|
LLM_ARCH_GEMMA,
|
|
|
|
|
+ LLM_ARCH_STARCODER2,
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
};
|
|
};
|
|
|
|
|
|
|
@@ -238,6 +239,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
|
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
|
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
|
|
{ LLM_ARCH_MINICPM, "minicpm" },
|
|
{ LLM_ARCH_MINICPM, "minicpm" },
|
|
|
{ LLM_ARCH_GEMMA, "gemma" },
|
|
{ LLM_ARCH_GEMMA, "gemma" },
|
|
|
|
|
+ { LLM_ARCH_STARCODER2, "starcoder2" },
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
enum llm_kv {
|
|
enum llm_kv {
|
|
@@ -779,6 +781,24 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
},
|
|
},
|
|
|
},
|
|
},
|
|
|
|
|
+ {
|
|
|
|
|
+ LLM_ARCH_STARCODER2,
|
|
|
|
|
+ {
|
|
|
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
|
|
|
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
|
|
|
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
|
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
|
|
|
+ },
|
|
|
|
|
+ },
|
|
|
{
|
|
{
|
|
|
LLM_ARCH_UNKNOWN,
|
|
LLM_ARCH_UNKNOWN,
|
|
|
{
|
|
{
|
|
@@ -3320,6 +3340,16 @@ static void llm_load_hparams(
|
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_STARCODER2:
|
|
|
|
|
+ {
|
|
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
|
|
|
+ switch (hparams.n_layer) {
|
|
|
|
|
+ case 30: model.type = e_model::MODEL_3B; break;
|
|
|
|
|
+ case 32: model.type = e_model::MODEL_7B; break;
|
|
|
|
|
+ case 40: model.type = e_model::MODEL_15B; break;
|
|
|
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default: (void)0;
|
|
default: (void)0;
|
|
|
}
|
|
}
|
|
|
|
|
|
|
@@ -4490,6 +4520,56 @@ static bool llm_load_tensors(
|
|
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
|
}
|
|
}
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_STARCODER2:
|
|
|
|
|
+ {
|
|
|
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
+
|
|
|
|
|
+ // output
|
|
|
|
|
+ {
|
|
|
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
|
|
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
|
|
|
|
|
+ // if output is NULL, init from the input tok embed
|
|
|
|
|
+ if (model.output == NULL) {
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
+ ml.n_created--; // artificial tensor
|
|
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
|
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
|
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
|
|
|
+
|
|
|
|
|
+ auto & layer = model.layers[i];
|
|
|
|
|
+
|
|
|
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
|
|
|
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
|
|
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ // optional bias tensors
|
|
|
|
|
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
|
|
|
|
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
|
|
|
|
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
|
|
|
|
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
|
|
|
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
|
|
|
|
+
|
|
|
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
|
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
|
|
|
+
|
|
|
|
|
+ // optional bias tensors
|
|
|
|
|
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
|
|
|
|
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
|
|
|
|
|
+ }
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
throw std::runtime_error("unknown architecture");
|
|
throw std::runtime_error("unknown architecture");
|
|
|
}
|
|
}
|
|
@@ -7559,6 +7639,120 @@ struct llm_build_context {
|
|
|
|
|
|
|
|
return gf;
|
|
return gf;
|
|
|
}
|
|
}
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_cgraph * build_starcoder2() {
|
|
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
|
|
+
|
|
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * cur;
|
|
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
|
|
+
|
|
|
|
|
+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
|
|
|
|
+ cb(inpL, "inp_embd", -1);
|
|
|
|
|
+
|
|
|
|
|
+ // inp_pos - contains the positions
|
|
|
|
|
+ struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
|
|
|
|
+ cb(inp_pos, "inp_pos", -1);
|
|
|
|
|
+
|
|
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
|
|
+ struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
|
|
|
|
+ cb(KQ_mask, "KQ_mask", -1);
|
|
|
|
|
+
|
|
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ // norm
|
|
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
|
|
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
|
|
|
|
+ LLM_NORM, cb, il);
|
|
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ // self-attention
|
|
|
|
|
+ {
|
|
|
|
|
+ // compute Q and K and RoPE them
|
|
|
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+ if (model.layers[il].bq) {
|
|
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+ if (model.layers[il].bk) {
|
|
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+ if (model.layers[il].bv) {
|
|
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ Qcur = ggml_rope_custom(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ Kcur = ggml_rope_custom(
|
|
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
|
|
|
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
|
+ );
|
|
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
|
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
|
|
+ cb(cur, "kqv_out", il);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
|
|
+
|
|
|
|
|
+ // feed-forward network
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
|
|
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
|
|
|
|
+ LLM_NORM, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_ffn(ctx0, cur,
|
|
|
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
|
|
|
|
+ NULL, NULL,
|
|
|
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
|
|
|
|
+ NULL,
|
|
|
|
|
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
|
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
|
|
+ cb(cur, "l_out", il);
|
|
|
|
|
+
|
|
|
|
|
+ // input for next layer
|
|
|
|
|
+ inpL = cur;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ cur = inpL;
|
|
|
|
|
+
|
|
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
|
|
+ model.output_norm, model.output_norm_b,
|
|
|
|
|
+ LLM_NORM, cb, -1);
|
|
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
|
|
+
|
|
|
|
|
+ // lm_head
|
|
|
|
|
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
|
|
+
|
|
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
|
|
+
|
|
|
|
|
+ return gf;
|
|
|
|
|
+ }
|
|
|
};
|
|
};
|
|
|
|
|
|
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
@@ -7705,6 +7899,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
{
|
|
{
|
|
|
result = llm.build_gemma();
|
|
result = llm.build_gemma();
|
|
|
} break;
|
|
} break;
|
|
|
|
|
+ case LLM_ARCH_STARCODER2:
|
|
|
|
|
+ {
|
|
|
|
|
+ result = llm.build_starcoder2();
|
|
|
|
|
+ } break;
|
|
|
default:
|
|
default:
|
|
|
GGML_ASSERT(false);
|
|
GGML_ASSERT(false);
|
|
|
}
|
|
}
|
|
@@ -12084,6 +12282,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
case LLM_ARCH_QWEN2:
|
|
case LLM_ARCH_QWEN2:
|
|
|
case LLM_ARCH_PHI2:
|
|
case LLM_ARCH_PHI2:
|
|
|
case LLM_ARCH_GEMMA:
|
|
case LLM_ARCH_GEMMA:
|
|
|
|
|
+ case LLM_ARCH_STARCODER2:
|
|
|
return LLAMA_ROPE_TYPE_NEOX;
|
|
return LLAMA_ROPE_TYPE_NEOX;
|
|
|
|
|
|
|
|
// all model arches should be listed explicitly here
|
|
// all model arches should be listed explicitly here
|