Browse Source

examples : add chat-vicuna.sh (#1854)

Co-authored-by: Yang Li <yangliyl@google.com>
yangli2 2 years ago
parent
commit
c36e81da62
2 changed files with 44 additions and 3 deletions
  1. 41 0
      examples/chat-vicuna.sh
  2. 3 3
      llama.h

+ 41 - 0
examples/chat-vicuna.sh

@@ -0,0 +1,41 @@
+#!/bin/bash
+
+set -e
+
+cd "$(dirname "$0")/.." || exit
+
+MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}"
+PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
+USER_NAME="### Human"
+AI_NAME="### Assistant"
+
+# Adjust to the number of CPU cores you want to use.
+N_THREAD="${N_THREAD:-8}"
+# Number of tokens to predict (made it larger than default because we want a long interaction)
+N_PREDICTS="${N_PREDICTS:-2048}"
+
+# Note: you can also override the generation options by specifying them on the command line:
+# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
+GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
+
+DATE_TIME=$(date +%H:%M)
+DATE_YEAR=$(date +%Y)
+
+PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
+
+sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
+    -e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
+    -e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
+    -e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
+     $PROMPT_TEMPLATE > $PROMPT_FILE
+
+# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
+./bin/main $GEN_OPTIONS \
+  --model "$MODEL" \
+  --threads "$N_THREAD" \
+  --n_predict "$N_PREDICTS" \
+  --color --interactive \
+  --file ${PROMPT_FILE} \
+  --reverse-prompt "### Human:" \
+  --in-prefix ' ' \
+  "$@"

+ 3 - 3
llama.h

@@ -244,9 +244,9 @@ extern "C" {
     LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
 
     // Special tokens
-    LLAMA_API llama_token llama_token_bos();
-    LLAMA_API llama_token llama_token_eos();
-    LLAMA_API llama_token llama_token_nl();
+    LLAMA_API llama_token llama_token_bos();  // beginning-of-sentence
+    LLAMA_API llama_token llama_token_eos();  // end-of-sentence
+    LLAMA_API llama_token llama_token_nl();   // next-line
 
     // Sampling functions