فهرست منبع

server: support multiple generations from one prompt (OAI "n" option) (#17775)

* backend support

* server: support multiple generations from one prompt (OAI "n" option)

* fix invalid batch

* format oai

* clean up

* disable ctx shift

* add test

* update comments

* fix style

* add n_cmpl to docs [no ci]

* allowing using both n_cmpl and n
Xuan-Son Nguyen 1 ماه پیش
والد
کامیت
c42712b056

+ 2 - 0
tools/server/README.md

@@ -493,6 +493,8 @@ Note for `multimodal_data` in JSON object prompts. This should be an array of st
 `n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
 By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
 
+`n_cmpl`: Number of completions to generate from the current prompt. If input has multiple prompts, the output will have N prompts times `n_cmpl` entries.
+
 `stream`: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to `true`.
 
 `stop`: Specify a JSON array of stopping strings.

+ 12 - 12
tools/server/server-common.cpp

@@ -494,6 +494,18 @@ int32_t server_tokens::process_chunk(
     return 0;
 }
 
+server_tokens server_tokens::clone() const {
+    server_tokens res;
+    res.has_mtmd = has_mtmd;
+    res.tokens   = tokens;
+    for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
+        size_t idx = it->first;
+        const mtmd::input_chunk_ptr & chunk = it->second;
+        res.map_idx_to_media[idx] = mtmd::input_chunk_ptr(mtmd_input_chunk_copy(chunk.get()));
+    }
+    return res;
+}
+
 //
 // tokenizer and input processing utils
 //
@@ -745,12 +757,6 @@ json oaicompat_completion_params_parse(const json & body) {
         llama_params["stop"] = json_value(body, "stop", json::array());
     }
 
-    // Handle "n" field
-    int n_choices = json_value(body, "n", 1);
-    if (n_choices != 1) {
-        throw std::runtime_error("Only one completion choice is allowed");
-    }
-
     // Handle "echo" field
     if (json_value(body, "echo", false)) {
         throw std::runtime_error("Only no echo is supported");
@@ -1049,12 +1055,6 @@ json oaicompat_chat_params_parse(
         llama_params["chat_parser"] = chat_params.parser;
     }
 
-    // Handle "n" field
-    int n_choices = json_value(body, "n", 1);
-    if (n_choices != 1) {
-        throw std::invalid_argument("Only one completion choice is allowed");
-    }
-
     // Handle "logprobs" field
     // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
     if (json_value(body, "logprobs", false)) {

+ 2 - 0
tools/server/server-common.h

@@ -215,6 +215,8 @@ public:
                 llama_pos pos,
                 int32_t seq_id,
                 size_t & n_tokens_out) const;
+
+    server_tokens clone() const;
 };
 
 

+ 80 - 5
tools/server/server-context.cpp

@@ -35,7 +35,8 @@ constexpr int HTTP_POLLING_SECONDS = 1;
 // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
 enum slot_state {
     SLOT_STATE_IDLE,
-    SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
+    SLOT_STATE_WAIT_OTHER, // after assigning a task, but waiting for parent slot to process prompt
+    SLOT_STATE_STARTED,    // after assigning a task and about to process prompt
     SLOT_STATE_PROCESSING_PROMPT,
     SLOT_STATE_DONE_PROMPT,
     SLOT_STATE_GENERATING,
@@ -254,6 +255,15 @@ struct server_slot {
         generated_token_probs.push_back(token);
     }
 
+    // note: a slot can also be either a parent or a child
+    bool is_parent() const {
+        return is_processing() && task->n_children > 0;
+    }
+
+    bool is_child() const {
+        return is_processing() && task->id_parent >= 0;
+    }
+
     void release() {
         if (is_processing()) {
             GGML_ASSERT(task);
@@ -383,6 +393,17 @@ struct server_slot {
 
         return res;
     }
+
+    void copy_state_to(server_slot & other) const {
+        llama_memory_seq_rm(llama_get_memory(ctx), other.id, 0, -1);
+        llama_memory_seq_cp(llama_get_memory(ctx), id, other.id, 0, -1);
+        other.n_decoded   = n_decoded;
+        other.n_remaining = n_remaining;
+        other.i_batch     = i_batch;
+        other.n_prompt_tokens_cache     = n_prompt_tokens_cache;
+        other.n_prompt_tokens_processed = n_prompt_tokens_processed;
+        other.prompt = prompt.clone();
+    }
 };
 
 
@@ -1022,7 +1043,9 @@ struct server_context_impl {
 
         slot.task = std::make_unique<const server_task>(std::move(task));
 
-        slot.state = SLOT_STATE_STARTED;
+        slot.state = slot.is_child()
+            ? SLOT_STATE_WAIT_OTHER // wait for the parent to process prompt
+            : SLOT_STATE_STARTED;
 
         SLT_INF(slot, "%s", "processing task\n");
 
@@ -1684,6 +1707,12 @@ struct server_context_impl {
                     GGML_ABORT("not supported by multimodal");
                 }
 
+                if (slot.is_parent() || slot.is_child()) {
+                    send_error(slot, "context shift cannot be used for shared prompt", ERROR_TYPE_SERVER);
+                    slot.release();
+                    continue;
+                }
+
                 // Shift context
                 int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
 
@@ -2308,6 +2337,26 @@ struct server_context_impl {
             n_batch = llama_n_batch(ctx);
 
             for (auto & slot : slots) {
+                // may need to copy state to other slots
+                if (slot.state == SLOT_STATE_DONE_PROMPT && slot.is_parent()) {
+                    std::vector<server_slot *> child_slots;
+                    for (auto & other : slots) {
+                        if (other.state == SLOT_STATE_WAIT_OTHER && slot.task->id == other.task->id_parent) {
+                            child_slots.push_back(&other);
+                        }
+                    }
+
+                    // we can only proceed if all child slots are having the correct tasks
+                    if (child_slots.size() == slot.task->n_children) {
+                        // copy state to the child slots
+                        for (auto & child : child_slots) {
+                            SLT_INF(slot, "copying state to child %d\n", child->id);
+                            slot.copy_state_to(*child);
+                            child->state = SLOT_STATE_DONE_PROMPT;
+                        }
+                    }
+                }
+
                 // optionally send prompt processing progress
                 if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
                     if (slot.task->params.stream && slot.task->params.return_progress) {
@@ -2593,11 +2642,12 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
         }
         tasks.reserve(inputs.size());
         states.reserve(inputs.size());
+        int idx = 0;
         for (size_t i = 0; i < inputs.size(); i++) {
             server_task task = server_task(type);
 
             task.id    = ctx_server.queue_tasks.get_new_id();
-            task.index = i;
+            task.index = idx++;
 
             task.tokens = std::move(inputs[i]);
             task.params = server_task::params_from_json_cmpl(
@@ -2612,6 +2662,18 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
             task.params.oaicompat_model   = ctx_server.model_name;
             states.push_back(task.params.oaicompat_chat_syntax);
 
+            if (task.params.n_cmpl > 1) {
+                task.n_children = task.params.n_cmpl - 1;
+                for (size_t j = 0; j < task.n_children; j++) {
+                    server_task child = task.create_child(
+                        task.id,
+                        ctx_server.queue_tasks.get_new_id(),
+                        idx++);
+                    states.push_back(child.params.oaicompat_chat_syntax);
+                    tasks.push_back(std::move(child));
+                }
+            }
+
             tasks.push_back(std::move(task));
         }
 
@@ -2638,8 +2700,21 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
                 GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
                 arr.push_back(res->to_json());
             }
-            // if single request, return single object instead of array
-            res->ok(arr.size() == 1 ? arr[0] : arr);
+            GGML_ASSERT(!arr.empty() && "empty results");
+            if (arr.size() == 1) {
+                // if single request, return single object instead of array
+                res->ok(arr[0]);
+            } else if (res_type == TASK_RESPONSE_TYPE_OAI_CHAT || res_type == TASK_RESPONSE_TYPE_OAI_CMPL) {
+                // if multiple results in OAI format, we need to re-format them
+                json & choices = arr[0]["choices"];
+                for (size_t i = 1; i < arr.size(); i++) {
+                    choices.push_back(std::move(arr[i]["choices"][0]));
+                }
+                res->ok(arr[0]);
+            } else {
+                // multi-results, non-OAI compat
+                res->ok(arr);
+            }
         }
     } else {
         // in streaming mode, the first error must be treated as non-stream response

+ 7 - 2
tools/server/server-task.cpp

@@ -175,6 +175,7 @@ task_params server_task::params_from_json_cmpl(
     params.n_indent         = json_value(data,       "n_indent",           defaults.n_indent);
     params.n_keep           = json_value(data,       "n_keep",             defaults.n_keep);
     params.n_discard        = json_value(data,       "n_discard",          defaults.n_discard);
+    params.n_cmpl           = json_value(data,       "n_cmpl",             json_value(data, "n", 1));
     //params.t_max_prompt_ms  = json_value(data,       "t_max_prompt_ms",    defaults.t_max_prompt_ms); // TODO: implement
     params.t_max_predict_ms = json_value(data,       "t_max_predict_ms",   defaults.t_max_predict_ms);
     params.response_fields  = json_value(data,       "response_fields",    std::vector<std::string>());
@@ -453,6 +454,10 @@ task_params server_task::params_from_json_cmpl(
         }
     }
 
+    if (params.n_cmpl > params_base.n_parallel) {
+        throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
+    }
+
     return params;
 }
 
@@ -664,7 +669,7 @@ json server_task_result_cmpl_final::to_json_oaicompat_chat() {
 
     json choice {
         {"finish_reason", finish_reason},
-        {"index", 0},
+        {"index", index},
         {"message", msg.to_json_oaicompat<json>()},
     };
 
@@ -1064,7 +1069,7 @@ json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
             {"choices", json::array({
                 json {
                     {"finish_reason", nullptr},
-                    {"index", 0},
+                    {"index", index},
                     {"delta", delta},
                 },
             })},

+ 24 - 0
tools/server/server-task.h

@@ -53,6 +53,7 @@ struct task_params {
     int32_t n_discard =  0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
     int32_t n_predict = -1; // new tokens to predict
     int32_t n_indent  =  0; // minimum line indentation for the generated text in number of whitespace characters
+    int32_t n_cmpl    =  1; // number of completions to generate from this prompt
 
     int64_t t_max_prompt_ms  = -1; // TODO: implement
     int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
@@ -89,6 +90,10 @@ struct server_task {
     int id_target = -1;
     int id_slot   = -1;
 
+    // used by parallel sampling (multiple completions from same prompt)
+    size_t n_children =  0; // number of tasks reusing this prompt
+    int    id_parent  = -1;
+
     // used by SERVER_TASK_TYPE_INFERENCE
     task_params   params;
     server_tokens tokens;
@@ -130,6 +135,17 @@ struct server_task {
         }
         return ids;
     }
+
+    server_task create_child(int id_parent, int id_child, int idx) const {
+        server_task copy;
+        copy.id        = id_child;
+        copy.index     = idx;
+        copy.id_parent = id_parent;
+        copy.params    = params;
+        copy.type      = type;
+        copy.tokens    = tokens.clone();
+        return copy;
+    }
 };
 
 struct result_timings {
@@ -466,6 +482,14 @@ struct server_prompt {
     int n_tokens() const {
         return tokens.size();
     }
+
+    server_prompt clone() const {
+        return server_prompt {
+            tokens.clone(),
+            data,
+            checkpoints
+        };
+    }
 };
 
 struct server_prompt_cache {

+ 19 - 0
tools/server/tests/unit/test_chat_completion.py

@@ -477,3 +477,22 @@ def test_return_progress(n_batch, batch_count, reuse_cache):
     assert last_progress["total"] > 0
     assert last_progress["processed"] == last_progress["total"]
     assert total_batch_count == batch_count
+
+
+def test_chat_completions_multiple_choices():
+    global server
+    server.start()
+    res = server.make_request("POST", "/chat/completions", data={
+        "max_tokens": 8,
+        "n": 2,
+        "messages": [
+            {"role": "system", "content": "Book"},
+            {"role": "user", "content": "What is the best book"},
+        ],
+    })
+    assert res.status_code == 200
+    assert len(res.body["choices"]) == 2
+    for choice in res.body["choices"]:
+        assert "assistant" == choice["message"]["role"]
+        assert match_regex("Suddenly", choice["message"]["content"])
+        assert choice["finish_reason"] == "length"