|
|
@@ -8647,53 +8647,60 @@ static int llama_apply_lora_from_file_internal(
|
|
|
|
|
|
const int64_t t_start_lora_us = ggml_time_us();
|
|
|
|
|
|
- auto fin = std::ifstream(path_lora, std::ios::binary);
|
|
|
- if (!fin) {
|
|
|
- LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
|
|
|
- return 1;
|
|
|
- }
|
|
|
+ llama_file fin(path_lora, "rb");
|
|
|
|
|
|
// verify magic and version
|
|
|
{
|
|
|
- uint32_t magic;
|
|
|
- fin.read((char *) &magic, sizeof(magic));
|
|
|
- uint32_t format_version;
|
|
|
- fin.read((char *) &format_version, sizeof(format_version));
|
|
|
+ uint32_t magic = fin.read_u32();
|
|
|
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
|
|
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
|
|
|
+ uint32_t format_version = fin.read_u32();
|
|
|
if (format_version != 1) {
|
|
|
LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
|
|
|
return 1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- int32_t lora_r;
|
|
|
- int32_t lora_alpha;
|
|
|
- fin.read((char *) &lora_r, sizeof(lora_r));
|
|
|
- fin.read((char *) &lora_alpha, sizeof(lora_alpha));
|
|
|
+ int32_t lora_r = fin.read_u32();
|
|
|
+ int32_t lora_alpha = fin.read_u32();
|
|
|
float scaling = scale * (float)lora_alpha / (float)lora_r;
|
|
|
|
|
|
LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
|
|
|
|
|
|
+ // create a name -> tensor map of the model to accelerate lookups
|
|
|
+ // find the max tensor size to estimate the required temporary buffer size
|
|
|
+ size_t max_tensor_size = 0;
|
|
|
+ std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
|
|
|
+ for (const auto & kv : model.tensors_by_name) {
|
|
|
+ model_tensors.insert(kv);
|
|
|
+ size_t f32_size = ggml_nelements(kv.second) * sizeof(float);
|
|
|
+ max_tensor_size = std::max(max_tensor_size, f32_size);
|
|
|
+ }
|
|
|
+
|
|
|
// create a temporary ggml context to store the lora tensors
|
|
|
- // todo: calculate size from biggest possible tensor
|
|
|
- std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
|
|
|
+ // TODO: use ggml-alloc
|
|
|
+ size_t lora_ctx_size = max_tensor_size * 3;
|
|
|
+ LLAMA_LOG_INFO("%s: allocating %.f MB for lora temporary buffer\n", __func__, lora_ctx_size / 1024.0 / 1024.0);
|
|
|
+ std::vector<uint8_t> lora_buf(lora_ctx_size);
|
|
|
+
|
|
|
struct ggml_init_params params;
|
|
|
params.mem_size = lora_buf.size();
|
|
|
params.mem_buffer = lora_buf.data();
|
|
|
params.no_alloc = false;
|
|
|
|
|
|
- ggml_context * lora_ctx = ggml_init(params);
|
|
|
- std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
|
|
|
+ using unique_context = std::unique_ptr<ggml_context, decltype(&ggml_free)>;
|
|
|
|
|
|
- // create a name -> tensor map of the model to accelerate lookups
|
|
|
- std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
|
|
|
- for (const auto & kv : model.tensors_by_name) {
|
|
|
- model_tensors.insert(kv);
|
|
|
- }
|
|
|
+ unique_context lora_ctx(nullptr, ggml_free);
|
|
|
+ lora_ctx.reset(ggml_init(params));
|
|
|
+ std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
|
|
|
|
|
|
// load base model
|
|
|
std::unique_ptr<llama_model_loader> ml;
|
|
|
- ggml_context * base_ctx = NULL;
|
|
|
+
|
|
|
+ unique_context base_ctx(nullptr, ggml_free);
|
|
|
std::vector<uint8_t> base_buf;
|
|
|
if (path_base_model) {
|
|
|
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
|
|
@@ -8702,6 +8709,7 @@ static int llama_apply_lora_from_file_internal(
|
|
|
size_t ctx_size;
|
|
|
size_t mmapped_size;
|
|
|
ml->calc_sizes(ctx_size, mmapped_size);
|
|
|
+
|
|
|
base_buf.resize(ctx_size);
|
|
|
|
|
|
ggml_init_params base_params;
|
|
|
@@ -8709,9 +8717,9 @@ static int llama_apply_lora_from_file_internal(
|
|
|
base_params.mem_buffer = base_buf.data();
|
|
|
base_params.no_alloc = ml->use_mmap;
|
|
|
|
|
|
- base_ctx = ggml_init(base_params);
|
|
|
+ base_ctx.reset(ggml_init(base_params));
|
|
|
|
|
|
- // maybe this should in llama_model_loader
|
|
|
+ // maybe this should be in llama_model_loader
|
|
|
if (ml->use_mmap) {
|
|
|
ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
|
|
|
}
|
|
|
@@ -8724,27 +8732,35 @@ static int llama_apply_lora_from_file_internal(
|
|
|
std::vector<uint8_t> work_buffer;
|
|
|
|
|
|
while (true) {
|
|
|
+ if (fin.tell() == fin.size) {
|
|
|
+ // eof
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
int32_t n_dims;
|
|
|
- int32_t length;
|
|
|
+ int32_t name_len;
|
|
|
int32_t ftype;
|
|
|
|
|
|
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
|
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
|
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
|
- if (fin.eof()) {
|
|
|
- break;
|
|
|
+ fin.read_raw(&n_dims, sizeof(n_dims));
|
|
|
+ fin.read_raw(&name_len, sizeof(name_len));
|
|
|
+ fin.read_raw(&ftype, sizeof(ftype));
|
|
|
+
|
|
|
+ if (n_dims != 1 && n_dims != 2) {
|
|
|
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
int32_t ne[2] = { 1, 1 };
|
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
|
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
|
+ fin.read_raw(&ne[i], sizeof(ne[i]));
|
|
|
}
|
|
|
|
|
|
std::string name;
|
|
|
{
|
|
|
+ GGML_ASSERT(name_len <= 1024);
|
|
|
char buf[1024];
|
|
|
- fin.read(buf, length);
|
|
|
- name = std::string(buf, length);
|
|
|
+ fin.read_raw(buf, name_len);
|
|
|
+ name = std::string(buf, name_len);
|
|
|
}
|
|
|
|
|
|
// check for lora suffix and get the type of tensor
|
|
|
@@ -8758,7 +8774,7 @@ static int llama_apply_lora_from_file_internal(
|
|
|
std::string lora_type = name.substr(pos + lora_suffix.length());
|
|
|
std::string base_name = name;
|
|
|
base_name.erase(pos);
|
|
|
- // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
|
|
+ // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(), base_name.c_str(), lora_type.c_str());
|
|
|
|
|
|
if (model_tensors.find(base_name) == model_tensors.end()) {
|
|
|
LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
|
|
@@ -8777,22 +8793,15 @@ static int llama_apply_lora_from_file_internal(
|
|
|
return false;
|
|
|
}
|
|
|
}
|
|
|
- ggml_tensor * lora_tensor;
|
|
|
- if (n_dims == 2) {
|
|
|
- lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
|
|
|
- }
|
|
|
- else {
|
|
|
- LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
|
|
- return 1;
|
|
|
- }
|
|
|
- ggml_set_name(lora_tensor, "lora_tensor");
|
|
|
+ ggml_tensor * lora_tensor = ggml_new_tensor_2d(lora_ctx.get(), wtype, ne[0], ne[1]);
|
|
|
+ ggml_set_name(lora_tensor, name.c_str());
|
|
|
|
|
|
// load tensor data
|
|
|
- size_t offset = fin.tellg();
|
|
|
+ size_t offset = fin.tell();
|
|
|
size_t tensor_data_size = ggml_nbytes(lora_tensor);
|
|
|
offset = (offset + 31) & -32;
|
|
|
- fin.seekg(offset);
|
|
|
- fin.read((char*)lora_tensor->data, tensor_data_size);
|
|
|
+ fin.seek(offset, SEEK_SET);
|
|
|
+ fin.read_raw(lora_tensor->data, tensor_data_size);
|
|
|
|
|
|
lora_tensors[name] = lora_tensor;
|
|
|
|
|
|
@@ -8822,13 +8831,11 @@ static int llama_apply_lora_from_file_internal(
|
|
|
|
|
|
// load from base model
|
|
|
if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
|
|
|
- // TODO: throw
|
|
|
LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
- // TODO: not tested!! maybe not working!
|
|
|
- base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
|
|
|
+ base_t = ml->create_tensor(base_ctx.get(), base_name, { dest_t->ne[0], dest_t->ne[1] }, GGML_BACKEND_CPU);
|
|
|
ml->load_data_for(base_t);
|
|
|
} else {
|
|
|
base_t = dest_t;
|
|
|
@@ -8857,43 +8864,45 @@ static int llama_apply_lora_from_file_internal(
|
|
|
}
|
|
|
|
|
|
// w = w + BA*s
|
|
|
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
|
|
|
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx.get(), loraA, loraB);
|
|
|
offload_func(BA);
|
|
|
ggml_set_name(BA, "BA");
|
|
|
|
|
|
if (scaling != 1.0f) {
|
|
|
- ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
|
|
|
+ ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx.get(), scaling);
|
|
|
ggml_set_name(scale_tensor, "scale_tensor");
|
|
|
|
|
|
- BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
|
|
|
+ BA = ggml_scale_inplace(lora_ctx.get(), BA, scale_tensor);
|
|
|
offload_func(BA);
|
|
|
ggml_set_name(BA, "BA_scaled");
|
|
|
}
|
|
|
|
|
|
ggml_tensor * r;
|
|
|
if (base_t == dest_t) {
|
|
|
- r = ggml_add_inplace(lora_ctx, dest_t, BA);
|
|
|
+ r = ggml_add_inplace(lora_ctx.get(), dest_t, BA);
|
|
|
offload_func_force_inplace(r);
|
|
|
ggml_set_name(r, "r_add_inplace");
|
|
|
}
|
|
|
else {
|
|
|
- r = ggml_add(lora_ctx, base_t, BA);
|
|
|
+ r = ggml_add(lora_ctx.get(), base_t, BA);
|
|
|
offload_func(r);
|
|
|
ggml_set_name(r, "r_add");
|
|
|
|
|
|
- r = ggml_cpy(lora_ctx, r, dest_t);
|
|
|
+ r = ggml_cpy(lora_ctx.get(), r, dest_t);
|
|
|
offload_func(r);
|
|
|
ggml_set_name(r, "r_cpy");
|
|
|
}
|
|
|
|
|
|
- struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph(lora_ctx.get());
|
|
|
ggml_build_forward_expand(gf, r);
|
|
|
|
|
|
ggml_graph_compute_helper(work_buffer, gf, n_threads);
|
|
|
|
|
|
+ // the tensors in the adapter must be sorted such that loraA and loraB of the same tensor are next to each other
|
|
|
+ GGML_ASSERT(lora_tensors.size() == 2);
|
|
|
+
|
|
|
// we won't need these tensors again, reset the context to save memory
|
|
|
- ggml_free(lora_ctx);
|
|
|
- lora_ctx = ggml_init(params);
|
|
|
+ lora_ctx.reset(ggml_init(params));
|
|
|
lora_tensors.clear();
|
|
|
|
|
|
n_tensors++;
|
|
|
@@ -8903,12 +8912,6 @@ static int llama_apply_lora_from_file_internal(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // TODO: this should be in a destructor, it will leak on failure
|
|
|
- ggml_free(lora_ctx);
|
|
|
- if (base_ctx) {
|
|
|
- ggml_free(base_ctx);
|
|
|
- }
|
|
|
-
|
|
|
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
|
|
LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
|
|
|
|