Просмотр исходного кода

py : cleanup the code

- use f-strings where possible
- drop first param of encode/decode functions since "utf-8" is the default
Pavol Rusnak 2 лет назад
Родитель
Сommit
cbef542879

+ 8 - 8
convert-ggml-to-pth.py

@@ -27,9 +27,9 @@ def read_tokens(fin, vocab_size):
         text_len = struct.unpack("i", fin.read(4))[0]
         text_len = struct.unpack("i", fin.read(4))[0]
         text_bytes = fin.read(text_len)
         text_bytes = fin.read(text_len)
         try:
         try:
-            text = text_bytes.decode("utf-8")
+            text = text_bytes.decode()
         except UnicodeDecodeError:
         except UnicodeDecodeError:
-            text = text_bytes.decode("utf-8", "replace")
+            text = text_bytes.decode(errors="replace")
         score = struct.unpack("f", fin.read(4))[0]
         score = struct.unpack("f", fin.read(4))[0]
         tokens.append((text, score))
         tokens.append((text, score))
     return tokens
     return tokens
@@ -82,7 +82,7 @@ def read_variables(fin):
 
 
         shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
         shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
         shape = shape[::-1]
         shape = shape[::-1]
-        name = fin.read(name_length).decode("utf-8")
+        name = fin.read(name_length).decode()
 
 
         # ensure tensor data is aligned
         # ensure tensor data is aligned
         tensor_data_offset = fin.tell()
         tensor_data_offset = fin.tell()
@@ -199,7 +199,7 @@ def chat(model, hparams, llama_dir):
     device = torch.device("cpu")
     device = torch.device("cpu")
     llama = llama.to(device)
     llama = llama.to(device)
 
 
-    ctx = """You are AI. 
+    ctx = """You are AI.
 This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
 This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
 User: Hello, AI.
 User: Hello, AI.
 AI: Hello! How can I assist you today?
 AI: Hello! How can I assist you today?
@@ -207,11 +207,11 @@ AI: Hello! How can I assist you today?
     print(ctx.rstrip("\n"))
     print(ctx.rstrip("\n"))
     while True:
     while True:
         print("-" * 60)
         print("-" * 60)
-        prompt = input(f"User: ")
+        prompt = input("User: ")
         if ctx != "":
         if ctx != "":
-            ctx = ctx + "User: " + prompt + "\n"
+            ctx = f"{ctx}User: {prompt}\n"
         else:
         else:
-            ctx = prompt + "\nAI:"
+            ctx = f"{prompt}\nAI:"
 
 
         ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
         ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
 
 
@@ -236,7 +236,7 @@ AI: Hello! How can I assist you today?
                 )
                 )
             s = generation_output.sequences[0]
             s = generation_output.sequences[0]
             decoded = tokenizer.decode(s)
             decoded = tokenizer.decode(s)
-            ctx = decoded + "\n"
+            ctx = f"{decoded}\n"
 
 
 
 
 def main():
 def main():

+ 3 - 3
convert-gpt4all-to-ggml.py

@@ -49,7 +49,7 @@ def write_header(f_out, header):
 def write_tokens(fout, tokenizer):
 def write_tokens(fout, tokenizer):
     for i in range(tokenizer.vocab_size()):
     for i in range(tokenizer.vocab_size()):
         if tokenizer.is_unknown(i):
         if tokenizer.is_unknown(i):
-            text = " \u2047 ".encode("utf-8")
+            text = " \u2047 ".encode()
         elif tokenizer.is_control(i):
         elif tokenizer.is_control(i):
             text = b""
             text = b""
         elif tokenizer.is_byte(i):
         elif tokenizer.is_byte(i):
@@ -60,13 +60,13 @@ def write_tokens(fout, tokenizer):
             byte_value = int(piece[3:-1], 16)
             byte_value = int(piece[3:-1], 16)
             text = struct.pack("B", byte_value)
             text = struct.pack("B", byte_value)
         else:
         else:
-            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
+            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
         fout.write(struct.pack("i", len(text)))
         fout.write(struct.pack("i", len(text)))
         fout.write(text)
         fout.write(text)
         fout.write(struct.pack("f", tokenizer.get_score(i)))
         fout.write(struct.pack("f", tokenizer.get_score(i)))
 
 
     # TODO: GPT4All - add extra <pad> token
     # TODO: GPT4All - add extra <pad> token
-    text = "<pad>".encode("utf-8")
+    text = "<pad>".encode()
     fout.write(struct.pack("i", len(text)))
     fout.write(struct.pack("i", len(text)))
     fout.write(text)
     fout.write(text)
     fout.write(struct.pack("f", 0.0))
     fout.write(struct.pack("f", 0.0))

+ 7 - 7
convert-gptq-to-ggml.py

@@ -50,7 +50,7 @@ fout.write(struct.pack("i", 4))
 # This loop unchanged from convert-pth-to-ggml.py:
 # This loop unchanged from convert-pth-to-ggml.py:
 for i in range(tokenizer.vocab_size()):
 for i in range(tokenizer.vocab_size()):
     if tokenizer.is_unknown(i):
     if tokenizer.is_unknown(i):
-        text = " \u2047 ".encode("utf-8")
+        text = " \u2047 ".encode()
     elif tokenizer.is_control(i):
     elif tokenizer.is_control(i):
         text = b""
         text = b""
     elif tokenizer.is_byte(i):
     elif tokenizer.is_byte(i):
@@ -61,13 +61,13 @@ for i in range(tokenizer.vocab_size()):
         byte_value = int(piece[3:-1], 16)
         byte_value = int(piece[3:-1], 16)
         text = struct.pack("B", byte_value)
         text = struct.pack("B", byte_value)
     else:
     else:
-        text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
+        text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
     fout.write(struct.pack("i", len(text)))
     fout.write(struct.pack("i", len(text)))
     fout.write(text)
     fout.write(text)
     fout.write(struct.pack("f", tokenizer.get_score(i)))
     fout.write(struct.pack("f", tokenizer.get_score(i)))
 
 
 def write_header(shape, dst_name, ftype_cur):
 def write_header(shape, dst_name, ftype_cur):
-    sname = dst_name.encode('utf-8')
+    sname = dst_name.encode()
     fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
     fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
     fout.write(struct.pack("i" * len(shape), *shape[::-1]))
     fout.write(struct.pack("i" * len(shape), *shape[::-1]))
     fout.write(sname)
     fout.write(sname)
@@ -80,7 +80,7 @@ def write_header(shape, dst_name, ftype_cur):
 def convert_non_q4(src_name, dst_name):
 def convert_non_q4(src_name, dst_name):
     v = model[src_name]
     v = model[src_name]
     shape = v.shape
     shape = v.shape
-    print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
+    print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}")
     if len(shape) == 1:
     if len(shape) == 1:
         print("  Converting to float32")
         print("  Converting to float32")
         v = v.to(torch.float32)
         v = v.to(torch.float32)
@@ -105,7 +105,7 @@ def convert_q4(src_name, dst_name, permute=False):
     # Each int32 item is actually 8 int4 items packed together, and it's transposed.
     # Each int32 item is actually 8 int4 items packed together, and it's transposed.
     shape = (qweight.shape[0], qweight.shape[1] * 8)
     shape = (qweight.shape[0], qweight.shape[1] * 8)
 
 
-    print("Processing Q4 variable: " + src_name + " with shape: ", shape)
+    print(f"Processing Q4 variable: {src_name} with shape: {shape}")
 
 
     # The output format has the int4 weights in groups of 32 rather than 8.
     # The output format has the int4 weights in groups of 32 rather than 8.
     # It looks like this:
     # It looks like this:
@@ -168,5 +168,5 @@ for i in range(n_layer):
 
 
 fout.close()
 fout.close()
 
 
-print("Done. Output file: " + fname_out)
-print("")
+print(f"Done. Output file: {fname_out}")
+print()

+ 3 - 3
convert-pth-to-ggml.py

@@ -120,7 +120,7 @@ def write_header(fout, hparams, ftype):
 def write_tokens(fout, tokenizer):
 def write_tokens(fout, tokenizer):
     for i in range(tokenizer.vocab_size()):
     for i in range(tokenizer.vocab_size()):
         if tokenizer.is_unknown(i):
         if tokenizer.is_unknown(i):
-            text = " \u2047 ".encode("utf-8")
+            text = " \u2047 ".encode()
         elif tokenizer.is_control(i):
         elif tokenizer.is_control(i):
             text = b""
             text = b""
         elif tokenizer.is_byte(i):
         elif tokenizer.is_byte(i):
@@ -131,7 +131,7 @@ def write_tokens(fout, tokenizer):
             byte_value = int(piece[3:-1], 16)
             byte_value = int(piece[3:-1], 16)
             text = struct.pack("B", byte_value)
             text = struct.pack("B", byte_value)
         else:
         else:
-            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
+            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
         fout.write(struct.pack("i", len(text)))
         fout.write(struct.pack("i", len(text)))
         fout.write(text)
         fout.write(text)
         fout.write(struct.pack("f", tokenizer.get_score(i)))
         fout.write(struct.pack("f", tokenizer.get_score(i)))
@@ -191,7 +191,7 @@ def process_and_write_variables(fout, model, ftype, part_id, n_parts):
         fullshape = list(partshape)
         fullshape = list(partshape)
         if n_dims > 1:
         if n_dims > 1:
             fullshape[split_dim] *= n_parts
             fullshape[split_dim] *= n_parts
-        sname = name.encode('utf-8')
+        sname = name.encode()
         fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
         fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
         for dim in reversed(fullshape):
         for dim in reversed(fullshape):
             fout.write(struct.pack("i", dim))
             fout.write(struct.pack("i", dim))

+ 2 - 2
convert-unversioned-ggml-to-ggml.py

@@ -44,7 +44,7 @@ def write_header(f_out, header):
 def write_tokens(fout, tokenizer):
 def write_tokens(fout, tokenizer):
     for i in range(tokenizer.vocab_size()):
     for i in range(tokenizer.vocab_size()):
         if tokenizer.is_unknown(i):
         if tokenizer.is_unknown(i):
-            text = " \u2047 ".encode("utf-8")
+            text = " \u2047 ".encode()
         elif tokenizer.is_control(i):
         elif tokenizer.is_control(i):
             text = b""
             text = b""
         elif tokenizer.is_byte(i):
         elif tokenizer.is_byte(i):
@@ -55,7 +55,7 @@ def write_tokens(fout, tokenizer):
             byte_value = int(piece[3:-1], 16)
             byte_value = int(piece[3:-1], 16)
             text = struct.pack("B", byte_value)
             text = struct.pack("B", byte_value)
         else:
         else:
-            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
+            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
         fout.write(struct.pack("i", len(text)))
         fout.write(struct.pack("i", len(text)))
         fout.write(text)
         fout.write(text)
         fout.write(struct.pack("f", tokenizer.get_score(i)))
         fout.write(struct.pack("f", tokenizer.get_score(i)))

+ 4 - 6
migrate-ggml-2023-03-30-pr613.py

@@ -272,13 +272,11 @@ def main():
         tokens = read_tokens(fin, hparams)
         tokens = read_tokens(fin, hparams)
 
 
     if hparams['magic'] == 0x67676a74:  # ggjt
     if hparams['magic'] == 0x67676a74:  # ggjt
-        print("%s: input ggml has already been converted to 'ggjt' magic\n" %
-              (args.fin_path))
+        print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n")
         sys.exit(1)
         sys.exit(1)
 
 
     if hparams['magic'] != 0x67676d66:  # ggmf
     if hparams['magic'] != 0x67676d66:  # ggmf
-        print("%s: input ggml file doesn't have expected 'ggmf' magic: %#x\n" %
-              (args.fin_path, hparams['magic']))
+        print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n")
         sys.exit(1)
         sys.exit(1)
 
 
     hparams['magic'] = 0x67676a74  # ggjt
     hparams['magic'] = 0x67676a74  # ggjt
@@ -286,7 +284,7 @@ def main():
     # count number of multipart files by convention
     # count number of multipart files by convention
     n_parts = 1
     n_parts = 1
     while True:
     while True:
-        if os.path.exists("%s.%d" % (args.fin_path, n_parts)):
+        if os.path.exists(f"{args.fin_path}.{n_parts}"):
             n_parts += 1
             n_parts += 1
         else:
         else:
             break
             break
@@ -302,7 +300,7 @@ def main():
             print(f"Processing part {part_id+1} of {n_parts}\n")
             print(f"Processing part {part_id+1} of {n_parts}\n")
             fin_path = args.fin_path
             fin_path = args.fin_path
             if part_id > 0:
             if part_id > 0:
-                fin_path += ".%d" % (part_id)
+                fin_path += f".{part_id}"
             with open(fin_path, "rb") as fin:
             with open(fin_path, "rb") as fin:
                 read_tokens(fin, read_hparams(fin))
                 read_tokens(fin, read_hparams(fin))
                 copy_tensors(fin, fout, part_id, n_parts)
                 copy_tensors(fin, fout, part_id, n_parts)