|
|
@@ -9,207 +9,250 @@
|
|
|
#include <fstream>
|
|
|
#include <algorithm>
|
|
|
|
|
|
-// most of the code here is copied from whisper.cpp
|
|
|
+// some of the code here is copied from whisper.cpp
|
|
|
|
|
|
constexpr bool DEBUG = false;
|
|
|
|
|
|
-struct mtmd_audio_mel_filters {
|
|
|
- int32_t n_mel;
|
|
|
- int32_t n_fft;
|
|
|
-
|
|
|
- std::vector<float> data;
|
|
|
-};
|
|
|
-
|
|
|
-// note: this global cache is shared among all preprocessors
|
|
|
-// if we want to use multiple preprocessors at the same time,
|
|
|
-// we will need to enclose it in the preprocessor class in the future
|
|
|
-static struct mtmd_audio_global_cache {
|
|
|
- // precomputed sin/cos table for FFT
|
|
|
- std::vector<float> sin_vals;
|
|
|
- std::vector<float> cos_vals;
|
|
|
-
|
|
|
- // hann window
|
|
|
- std::vector<float> hann_window;
|
|
|
-
|
|
|
- // mel filter bank
|
|
|
- mtmd_audio_mel_filters filters;
|
|
|
-
|
|
|
- void fill_sin_cos_table(int n) {
|
|
|
- sin_vals.resize(n);
|
|
|
- cos_vals.resize(n);
|
|
|
- for (int i = 0; i < n; i++) {
|
|
|
- double theta = (2 * M_PI * i) / n;
|
|
|
- sin_vals[i] = sinf(theta);
|
|
|
- cos_vals[i] = cosf(theta);
|
|
|
- }
|
|
|
+void mtmd_audio_cache::fill_sin_cos_table(int n) {
|
|
|
+ sin_vals.resize(n);
|
|
|
+ cos_vals.resize(n);
|
|
|
+ for (int i = 0; i < n; i++) {
|
|
|
+ double theta = (2 * M_PI * i) / n;
|
|
|
+ sin_vals[i] = sinf(theta);
|
|
|
+ cos_vals[i] = cosf(theta);
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- void fill_hann_window(int length, bool periodic) {
|
|
|
- hann_window.resize(length);
|
|
|
- int offset = -1;
|
|
|
- if (periodic) {
|
|
|
- offset = 0;
|
|
|
- }
|
|
|
- for (int i = 0; i < length; i++) {
|
|
|
- hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
|
|
|
- }
|
|
|
+void mtmd_audio_cache::fill_hann_window(int length, bool periodic) {
|
|
|
+ hann_window.resize(length);
|
|
|
+ int offset = -1;
|
|
|
+ if (periodic) {
|
|
|
+ offset = 0;
|
|
|
+ }
|
|
|
+ for (int i = 0; i < length; i++) {
|
|
|
+ hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- // Build mel filterbank matrix [n_mel × n_fft_bins] at runtime.
|
|
|
- // n_fft_bins must be (N_fft / 2 + 1). Example: if N_fft=512 -> n_fft_bins=257.
|
|
|
- void fill_mel_filterbank_matrix(
|
|
|
- int n_mel,
|
|
|
- int n_fft,
|
|
|
- int sample_rate, // e.g. 16000
|
|
|
- float fmin = 0.0f, // e.g. 0.0
|
|
|
- float fmax = -1.0f, // e.g. sr/2; pass -1 for auto
|
|
|
- bool slaney_area_norm = true,
|
|
|
- float scale = 1.0f // optional extra scaling; use 1.0f/1000.0f to mimic your code
|
|
|
- ) {
|
|
|
- GGML_ASSERT(n_mel > 0 && n_fft > 1);
|
|
|
- if (fmax <= 0.0f) {
|
|
|
- fmax = 0.5f * sample_rate;
|
|
|
- }
|
|
|
+void mtmd_audio_cache::fill_mel_filterbank_matrix(int n_mel,
|
|
|
+ int n_fft,
|
|
|
+ int sample_rate,
|
|
|
+ float fmin,
|
|
|
+ float fmax,
|
|
|
+ bool slaney_area_norm,
|
|
|
+ float scale) {
|
|
|
+ GGML_ASSERT(n_mel > 0 && n_fft > 1);
|
|
|
+ if (fmax <= 0.0f) {
|
|
|
+ fmax = 0.5f * sample_rate;
|
|
|
+ }
|
|
|
|
|
|
- // Slaney scale (matches librosa default)
|
|
|
- const double min_log_hz = 1000.0;
|
|
|
- const double lin_slope = 3 / 200.;
|
|
|
- const double min_log_mel = min_log_hz * lin_slope;
|
|
|
- const double log_step = log(6.4) / 27.0;
|
|
|
- auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
|
|
|
- return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
|
|
|
- };
|
|
|
- auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
|
|
|
- return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
|
|
|
- };
|
|
|
-
|
|
|
- // infer N_fft from n_fft_bins
|
|
|
- const double bin_hz_step = double(sample_rate) / double(n_fft);
|
|
|
-
|
|
|
- // mel grid: n_mel + 2 edges
|
|
|
- const double m_lo = hz_to_mel(fmin);
|
|
|
- const double m_hi = hz_to_mel(fmax);
|
|
|
- std::vector<double> mel_pts(n_mel + 2);
|
|
|
- for (int i = 0; i < n_mel + 2; ++i) {
|
|
|
- mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
|
|
|
- }
|
|
|
+ // Slaney scale (matches librosa default)
|
|
|
+ const double min_log_hz = 1000.0;
|
|
|
+ const double lin_slope = 3 / 200.;
|
|
|
+ const double min_log_mel = min_log_hz * lin_slope;
|
|
|
+ const double log_step = log(6.4) / 27.0;
|
|
|
+ auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
|
|
|
+ return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
|
|
|
+ };
|
|
|
+ auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
|
|
|
+ return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
|
|
|
+ };
|
|
|
+
|
|
|
+ // infer N_fft from n_fft_bins
|
|
|
+ const double bin_hz_step = double(sample_rate) / double(n_fft);
|
|
|
+
|
|
|
+ // mel grid: n_mel + 2 edges
|
|
|
+ const double m_lo = hz_to_mel(fmin);
|
|
|
+ const double m_hi = hz_to_mel(fmax);
|
|
|
+ std::vector<double> mel_pts(n_mel + 2);
|
|
|
+ for (int i = 0; i < n_mel + 2; ++i) {
|
|
|
+ mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
|
|
|
+ }
|
|
|
|
|
|
- // convert to Hz
|
|
|
- std::vector<double> hz_pts(n_mel + 2);
|
|
|
- for (int i = 0; i < n_mel + 2; ++i) {
|
|
|
- hz_pts[i] = mel_to_hz(mel_pts[i]);
|
|
|
- }
|
|
|
+ // convert to Hz
|
|
|
+ std::vector<double> hz_pts(n_mel + 2);
|
|
|
+ for (int i = 0; i < n_mel + 2; ++i) {
|
|
|
+ hz_pts[i] = mel_to_hz(mel_pts[i]);
|
|
|
+ }
|
|
|
|
|
|
- const int n_fft_bins = n_fft / 2 + 1;
|
|
|
-
|
|
|
- // filterbank
|
|
|
- std::vector<float> out(n_mel * n_fft_bins, 0);
|
|
|
- for (int m = 0; m < n_mel; ++m) {
|
|
|
- const double f_left = hz_pts[m];
|
|
|
- const double f_center = hz_pts[m + 1];
|
|
|
- const double f_right = hz_pts[m + 2];
|
|
|
-
|
|
|
- const double denom_l = std::max(1e-30, f_center - f_left);
|
|
|
- const double denom_r = std::max(1e-30, f_right - f_center);
|
|
|
- const double enorm = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;
|
|
|
-
|
|
|
- for (int k = 0; k < n_fft_bins; ++k) {
|
|
|
- const double f = k * bin_hz_step;
|
|
|
- double w = 0.0;
|
|
|
- if (f >= f_left && f <= f_center) {
|
|
|
- w = (f - f_left) / denom_l;
|
|
|
- } else if (f > f_center && f <= f_right) {
|
|
|
- w = (f_right - f) / denom_r;
|
|
|
- }
|
|
|
- out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
|
|
|
+ const int n_fft_bins = n_fft / 2 + 1;
|
|
|
+
|
|
|
+ // filterbank
|
|
|
+ std::vector<float> out(n_mel * n_fft_bins, 0);
|
|
|
+ for (int m = 0; m < n_mel; ++m) {
|
|
|
+ const double f_left = hz_pts[m];
|
|
|
+ const double f_center = hz_pts[m + 1];
|
|
|
+ const double f_right = hz_pts[m + 2];
|
|
|
+
|
|
|
+ const double denom_l = std::max(1e-30, f_center - f_left);
|
|
|
+ const double denom_r = std::max(1e-30, f_right - f_center);
|
|
|
+ const double enorm = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;
|
|
|
+
|
|
|
+ for (int k = 0; k < n_fft_bins; ++k) {
|
|
|
+ const double f = k * bin_hz_step;
|
|
|
+ double w = 0.0;
|
|
|
+ if (f >= f_left && f <= f_center) {
|
|
|
+ w = (f - f_left) / denom_l;
|
|
|
+ } else if (f > f_center && f <= f_right) {
|
|
|
+ w = (f_right - f) / denom_r;
|
|
|
}
|
|
|
+ out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- filters.n_mel = n_mel;
|
|
|
- filters.n_fft = n_fft;
|
|
|
- filters.data = std::move(out);
|
|
|
+ filters.n_mel = n_mel;
|
|
|
+ filters.n_fft = n_fft;
|
|
|
+ filters.data = std::move(out);
|
|
|
|
|
|
- if (DEBUG) { // debug
|
|
|
- for (size_t i = 0; i < filters.data.size(); ++i) {
|
|
|
- if (filters.data[i] != 0.0f) {
|
|
|
- printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
|
|
|
- }
|
|
|
+ if (DEBUG) { // debug
|
|
|
+ for (size_t i = 0; i < filters.data.size(); ++i) {
|
|
|
+ if (filters.data[i] != 0.0f) {
|
|
|
+ printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
-} g_cache;
|
|
|
+}
|
|
|
|
|
|
-// naive Discrete Fourier Transform
|
|
|
-// input is real-valued
|
|
|
-// output is complex-valued
|
|
|
-static void dft(const float * in, int N, float * out) {
|
|
|
- const int n_sin_cos_vals = g_cache.sin_vals.size();
|
|
|
- const int sin_cos_step = n_sin_cos_vals / N;
|
|
|
+// Unified DFT implementation for both forward and inverse transforms
|
|
|
+// Template parameters:
|
|
|
+// Inverse: false = DFT with exp(-2πi·k·n/N), no scaling
|
|
|
+// true = IDFT with exp(+2πi·k·n/N), scales by 1/N
|
|
|
+// RealInput: true = input is real-valued (stride 1), avoids imaginary computations
|
|
|
+// false = input is complex-valued (interleaved real/imag, stride 2)
|
|
|
+template <bool Inverse, bool RealInput>
|
|
|
+static void dft_impl(const mtmd_audio_cache & cache, const float * in, int N, float * out) {
|
|
|
+ const int n_sin_cos_vals = cache.sin_vals.size();
|
|
|
+ const int sin_cos_step = n_sin_cos_vals / N;
|
|
|
+
|
|
|
+ constexpr float sign = Inverse ? 1.0f : -1.0f;
|
|
|
+ const float scale = Inverse ? (1.0f / N) : 1.0f;
|
|
|
|
|
|
for (int k = 0; k < N; k++) {
|
|
|
float re = 0;
|
|
|
float im = 0;
|
|
|
|
|
|
for (int n = 0; n < N; n++) {
|
|
|
- int idx = (k * n * sin_cos_step) % (n_sin_cos_vals); // t = 2*M_PI*k*n/N
|
|
|
- re += in[n] * g_cache.cos_vals[idx]; // cos(t)
|
|
|
- im -= in[n] * g_cache.sin_vals[idx]; // sin(t)
|
|
|
+ int idx = (k * n * sin_cos_step) % n_sin_cos_vals;
|
|
|
+ float cos_val = cache.cos_vals[idx];
|
|
|
+ float sin_val = cache.sin_vals[idx];
|
|
|
+
|
|
|
+ if constexpr (RealInput) {
|
|
|
+ // Real input: in_im = 0, simplifies to:
|
|
|
+ // re += in_re * cos_val
|
|
|
+ // im += sign * in_re * sin_val
|
|
|
+ float in_re = in[n];
|
|
|
+ re += in_re * cos_val;
|
|
|
+ im += sign * in_re * sin_val;
|
|
|
+ } else {
|
|
|
+ float in_re = in[n * 2 + 0];
|
|
|
+ float in_im = in[n * 2 + 1];
|
|
|
+ // (a + bi) * (cos + sign*i*sin) = (a*cos - sign*b*sin) + (sign*a*sin + b*cos)i
|
|
|
+ re += in_re * cos_val - sign * in_im * sin_val;
|
|
|
+ im += sign * in_re * sin_val + in_im * cos_val;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- out[k*2 + 0] = re;
|
|
|
- out[k*2 + 1] = im;
|
|
|
+ out[k * 2 + 0] = re * scale;
|
|
|
+ out[k * 2 + 1] = im * scale;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-// Cooley-Tukey FFT
|
|
|
-// poor man's implementation - use something better
|
|
|
-// input is real-valued
|
|
|
-// output is complex-valued
|
|
|
-static void fft(float * in, int N, float * out) {
|
|
|
- const int n_sin_cos_vals = g_cache.sin_vals.size();
|
|
|
+// Cooley-Tukey FFT/IFFT unified implementation
|
|
|
+// Template parameters:
|
|
|
+// Inverse: false = FFT with exp(-2πi·k/N), no scaling
|
|
|
+// true = IFFT with exp(+2πi·k/N), scales by 0.5 at each level
|
|
|
+// RealInput: true = input is real-valued (stride 1)
|
|
|
+// false = input is complex-valued (interleaved real/imag, stride 2)
|
|
|
+template <bool Inverse, bool RealInput>
|
|
|
+static void fft_impl(const mtmd_audio_cache & cache, float * in, int N, float * out) {
|
|
|
+ const int n_sin_cos_vals = cache.sin_vals.size();
|
|
|
+
|
|
|
if (N == 1) {
|
|
|
out[0] = in[0];
|
|
|
- out[1] = 0;
|
|
|
+ if constexpr (RealInput) {
|
|
|
+ out[1] = 0.0f;
|
|
|
+ } else {
|
|
|
+ out[1] = in[1];
|
|
|
+ }
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
const int half_N = N / 2;
|
|
|
- if (N - half_N*2 == 1) {
|
|
|
- dft(in, N, out);
|
|
|
+ if (N - half_N * 2 == 1) {
|
|
|
+ // Odd N: fall back to DFT
|
|
|
+ dft_impl<Inverse, RealInput>(cache, in, N, out);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- float* even = in + N;
|
|
|
- for (int i = 0; i < half_N; ++i) {
|
|
|
- even[i]= in[2*i];
|
|
|
- }
|
|
|
- float* even_fft = out + 2 * N;
|
|
|
- fft(even, half_N, even_fft);
|
|
|
+ // Split into even and odd
|
|
|
+ if constexpr (RealInput) {
|
|
|
+ // Real input: stride is 1, copy only real values
|
|
|
+ float * even = in + N;
|
|
|
+ for (int i = 0; i < half_N; ++i) {
|
|
|
+ even[i] = in[2 * i];
|
|
|
+ }
|
|
|
+ float * even_fft = out + 2 * N;
|
|
|
+ fft_impl<Inverse, true>(cache, even, half_N, even_fft);
|
|
|
+
|
|
|
+ float * odd = even;
|
|
|
+ for (int i = 0; i < half_N; ++i) {
|
|
|
+ odd[i] = in[2 * i + 1];
|
|
|
+ }
|
|
|
+ float * odd_fft = even_fft + N;
|
|
|
+ fft_impl<Inverse, true>(cache, odd, half_N, odd_fft);
|
|
|
+ } else {
|
|
|
+ // Complex input: stride is 2, copy complex pairs
|
|
|
+ float * even = in + N * 2;
|
|
|
+ for (int i = 0; i < half_N; ++i) {
|
|
|
+ even[i * 2 + 0] = in[2 * i * 2 + 0];
|
|
|
+ even[i * 2 + 1] = in[2 * i * 2 + 1];
|
|
|
+ }
|
|
|
+ float * even_fft = out + 2 * N;
|
|
|
+ fft_impl<Inverse, false>(cache, even, half_N, even_fft);
|
|
|
|
|
|
- float* odd = even;
|
|
|
- for (int i = 0; i < half_N; ++i) {
|
|
|
- odd[i] = in[2*i + 1];
|
|
|
+ float * odd = even;
|
|
|
+ for (int i = 0; i < half_N; ++i) {
|
|
|
+ odd[i * 2 + 0] = in[(2 * i + 1) * 2 + 0];
|
|
|
+ odd[i * 2 + 1] = in[(2 * i + 1) * 2 + 1];
|
|
|
+ }
|
|
|
+ float * odd_fft = even_fft + N;
|
|
|
+ fft_impl<Inverse, false>(cache, odd, half_N, odd_fft);
|
|
|
}
|
|
|
- float* odd_fft = even_fft + N;
|
|
|
- fft(odd, half_N, odd_fft);
|
|
|
+
|
|
|
+ float * even_fft = out + 2 * N;
|
|
|
+ float * odd_fft = even_fft + N;
|
|
|
|
|
|
const int sin_cos_step = n_sin_cos_vals / N;
|
|
|
+
|
|
|
+ constexpr float sign = Inverse ? 1.0f : -1.0f;
|
|
|
+ constexpr float scale = Inverse ? 0.5f : 1.0f;
|
|
|
+
|
|
|
for (int k = 0; k < half_N; k++) {
|
|
|
- int idx = k * sin_cos_step; // t = 2*M_PI*k/N
|
|
|
- float re = g_cache.cos_vals[idx]; // cos(t)
|
|
|
- float im = -g_cache.sin_vals[idx]; // sin(t)
|
|
|
+ int idx = k * sin_cos_step; // t = 2*M_PI*k/N
|
|
|
+ float re = cache.cos_vals[idx];
|
|
|
+ float im = sign * cache.sin_vals[idx];
|
|
|
|
|
|
- float re_odd = odd_fft[2*k + 0];
|
|
|
- float im_odd = odd_fft[2*k + 1];
|
|
|
+ float re_odd = odd_fft[2 * k + 0];
|
|
|
+ float im_odd = odd_fft[2 * k + 1];
|
|
|
|
|
|
- out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
|
|
- out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
|
|
+ out[2 * k + 0] = scale * (even_fft[2 * k + 0] + re * re_odd - im * im_odd);
|
|
|
+ out[2 * k + 1] = scale * (even_fft[2 * k + 1] + re * im_odd + im * re_odd);
|
|
|
|
|
|
- out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
|
|
- out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
|
|
+ out[2 * (k + half_N) + 0] = scale * (even_fft[2 * k + 0] - re * re_odd + im * im_odd);
|
|
|
+ out[2 * (k + half_N) + 1] = scale * (even_fft[2 * k + 1] - re * im_odd - im * re_odd);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+// Forward FFT for real input (used by mel spectrogram)
|
|
|
+static void fft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
|
|
|
+ fft_impl<false, true>(cache, in, N, out);
|
|
|
+}
|
|
|
+
|
|
|
+// Inverse FFT for complex input
|
|
|
+static void ifft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
|
|
|
+ fft_impl<true, false>(cache, in, N, out);
|
|
|
+}
|
|
|
+
|
|
|
struct filter_params {
|
|
|
int32_t n_mel;
|
|
|
int32_t n_fft_bins;
|
|
|
@@ -222,20 +265,27 @@ struct filter_params {
|
|
|
bool norm_per_feature = false;
|
|
|
};
|
|
|
|
|
|
-static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
|
|
- int n_samples, int frame_size, int frame_step, int n_threads,
|
|
|
- const filter_params & params, mtmd_audio_mel & out) {
|
|
|
+static void log_mel_spectrogram_worker_thread(int ith,
|
|
|
+ const float * hann,
|
|
|
+ const std::vector<float> & samples,
|
|
|
+ int n_samples,
|
|
|
+ int frame_size,
|
|
|
+ int frame_step,
|
|
|
+ int n_threads,
|
|
|
+ const filter_params & params,
|
|
|
+ const mtmd_audio_cache & cache,
|
|
|
+ mtmd_audio_mel & out) {
|
|
|
std::vector<float> fft_in(frame_size * 2, 0.0);
|
|
|
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
|
|
|
|
|
|
int n_fft_bins = params.n_fft_bins;
|
|
|
int i = ith;
|
|
|
|
|
|
- const auto & filters = g_cache.filters;
|
|
|
+ const auto & filters = cache.filters;
|
|
|
|
|
|
// make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
|
|
|
GGML_ASSERT(n_fft_bins == 1 + (frame_size / 2));
|
|
|
- GGML_ASSERT(g_cache.sin_vals.size() == g_cache.cos_vals.size());
|
|
|
+ GGML_ASSERT(cache.sin_vals.size() == cache.cos_vals.size());
|
|
|
// calculate FFT only when fft_in are not all zero
|
|
|
for (; i < std::min(n_samples / frame_step + 1, out.n_len); i += n_threads) {
|
|
|
const int offset = i * frame_step;
|
|
|
@@ -251,7 +301,7 @@ static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const
|
|
|
}
|
|
|
|
|
|
// FFT
|
|
|
- fft(fft_in.data(), frame_size, fft_out.data());
|
|
|
+ fft(cache, fft_in.data(), frame_size, fft_out.data());
|
|
|
|
|
|
// Calculate modulus^2 of complex numbers
|
|
|
// Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
|
|
|
@@ -298,6 +348,7 @@ static bool log_mel_spectrogram(
|
|
|
const int n_samples_in,
|
|
|
const int n_threads,
|
|
|
const filter_params & params,
|
|
|
+ const mtmd_audio_cache & cache,
|
|
|
mtmd_audio_mel & out) {
|
|
|
//const int64_t t_start_us = ggml_time_us();
|
|
|
|
|
|
@@ -305,9 +356,9 @@ static bool log_mel_spectrogram(
|
|
|
int n_samples = n_samples_in;
|
|
|
|
|
|
// Hann window
|
|
|
- const float * hann = g_cache.hann_window.data();
|
|
|
- const int frame_size = (params.n_fft_bins - 1) * 2;
|
|
|
- const int frame_step = params.hop_length;
|
|
|
+ const float * hann = cache.hann_window.data();
|
|
|
+ const int frame_size = (params.n_fft_bins - 1) * 2;
|
|
|
+ const int frame_step = params.hop_length;
|
|
|
|
|
|
// Padding
|
|
|
std::vector<float> samples_padded;
|
|
|
@@ -335,9 +386,9 @@ static bool log_mel_spectrogram(
|
|
|
|
|
|
// preemphasis
|
|
|
if (params.preemph) {
|
|
|
- const int pad_amount = frame_size / 2;
|
|
|
+ const int pad_amount = frame_size / 2;
|
|
|
const float preemph = 0.97f;
|
|
|
- float prev = samples_padded[pad_amount];
|
|
|
+ float prev = samples_padded[pad_amount];
|
|
|
for (int i = pad_amount + 1; i + pad_amount < n_samples; ++i) {
|
|
|
float cur = samples_padded[i];
|
|
|
samples_padded[i] = cur - preemph * prev;
|
|
|
@@ -372,14 +423,14 @@ static bool log_mel_spectrogram(
|
|
|
{
|
|
|
std::vector<std::thread> workers(n_threads - 1);
|
|
|
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
|
- workers[iw] = std::thread(
|
|
|
- log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
|
|
|
- n_samples, frame_size, frame_step, n_threads,
|
|
|
- std::cref(params), std::ref(out));
|
|
|
+ workers[iw] =
|
|
|
+ std::thread(log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded), n_samples,
|
|
|
+ frame_size, frame_step, n_threads, std::cref(params), std::cref(cache), std::ref(out));
|
|
|
}
|
|
|
|
|
|
// main thread
|
|
|
- log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params, out);
|
|
|
+ log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params,
|
|
|
+ cache, out);
|
|
|
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
|
workers[iw].join();
|
|
|
}
|
|
|
@@ -404,7 +455,7 @@ static bool log_mel_spectrogram(
|
|
|
|
|
|
for (int j = 0; j < effective_n_len; ++j) {
|
|
|
auto &value = out.data[i * out.n_len + j];
|
|
|
- value = (value - mean) / mstd;
|
|
|
+ value = (value - mean) / mstd;
|
|
|
}
|
|
|
|
|
|
// pad the rest with zeros
|
|
|
@@ -450,18 +501,14 @@ static bool log_mel_spectrogram(
|
|
|
//
|
|
|
|
|
|
void mtmd_audio_preprocessor_whisper::initialize() {
|
|
|
- g_cache.fill_sin_cos_table(hparams.audio_n_fft);
|
|
|
- g_cache.fill_hann_window(hparams.audio_window_len, true);
|
|
|
- g_cache.fill_mel_filterbank_matrix(
|
|
|
- hparams.n_mel_bins,
|
|
|
- hparams.audio_n_fft,
|
|
|
- hparams.audio_sample_rate);
|
|
|
+ cache.fill_sin_cos_table(hparams.audio_n_fft);
|
|
|
+ cache.fill_hann_window(hparams.audio_window_len, true);
|
|
|
+ cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
|
|
|
}
|
|
|
|
|
|
-bool mtmd_audio_preprocessor_whisper::preprocess(
|
|
|
- const float * samples,
|
|
|
- size_t n_samples,
|
|
|
- std::vector<mtmd_audio_mel> & output) {
|
|
|
+bool mtmd_audio_preprocessor_whisper::preprocess(const float * samples,
|
|
|
+ size_t n_samples,
|
|
|
+ std::vector<mtmd_audio_mel> & output) {
|
|
|
if (n_samples == 0) {
|
|
|
// empty audio
|
|
|
return false;
|
|
|
@@ -471,7 +518,7 @@ bool mtmd_audio_preprocessor_whisper::preprocess(
|
|
|
// if input is too short, pad with zeros
|
|
|
// this is to avoid potential issues with stage1/2 padding in log_mel_spectrogram
|
|
|
// TODO: maybe handle this better
|
|
|
- size_t min_samples = (size_t)hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
|
|
|
+ size_t min_samples = (size_t) hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
|
|
|
if (n_samples < min_samples) {
|
|
|
smpl.resize(min_samples, 0.0f);
|
|
|
std::memcpy(smpl.data(), samples, n_samples * sizeof(float));
|
|
|
@@ -486,22 +533,19 @@ bool mtmd_audio_preprocessor_whisper::preprocess(
|
|
|
params.hop_length = hparams.audio_hop_len;
|
|
|
params.sample_rate = hparams.audio_sample_rate;
|
|
|
params.center_padding = false;
|
|
|
- params.preemph = 0.0f; // disabled
|
|
|
+ params.preemph = 0.0f; // disabled
|
|
|
params.use_natural_log = false;
|
|
|
params.norm_per_feature = false;
|
|
|
|
|
|
- // make sure the global cache is initialized
|
|
|
- GGML_ASSERT(!g_cache.sin_vals.empty());
|
|
|
- GGML_ASSERT(!g_cache.cos_vals.empty());
|
|
|
- GGML_ASSERT(!g_cache.filters.data.empty());
|
|
|
+ // make sure the cache is initialized
|
|
|
+ GGML_ASSERT(!cache.sin_vals.empty());
|
|
|
+ GGML_ASSERT(!cache.cos_vals.empty());
|
|
|
+ GGML_ASSERT(!cache.filters.data.empty());
|
|
|
|
|
|
mtmd_audio_mel out_full;
|
|
|
- bool ok = log_mel_spectrogram(
|
|
|
- samples,
|
|
|
- n_samples,
|
|
|
- 4, // n_threads
|
|
|
- params,
|
|
|
- out_full);
|
|
|
+ bool ok = log_mel_spectrogram(samples, n_samples,
|
|
|
+ 4, // n_threads
|
|
|
+ params, cache, out_full);
|
|
|
if (!ok) {
|
|
|
return false;
|
|
|
}
|
|
|
@@ -512,21 +556,21 @@ bool mtmd_audio_preprocessor_whisper::preprocess(
|
|
|
printf("output: n_mel = %d, n_len = %d\n", out_full.n_mel, out_full.n_len);
|
|
|
}
|
|
|
const size_t frames_per_chunk = 3000;
|
|
|
- GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
|
|
|
- for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
|
|
|
- int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
|
|
|
- if ((size_t)n_len < frames_per_chunk) {
|
|
|
- break; // last uncomplete chunk will always be a padded chunk, safe to ignore
|
|
|
+ GGML_ASSERT((size_t) out_full.n_len > frames_per_chunk);
|
|
|
+ for (size_t off = 0; off < (size_t) out_full.n_len; off += frames_per_chunk) {
|
|
|
+ int n_len = std::min(frames_per_chunk, (size_t) out_full.n_len - off);
|
|
|
+ if ((size_t) n_len < frames_per_chunk) {
|
|
|
+ break; // last uncomplete chunk will always be a padded chunk, safe to ignore
|
|
|
}
|
|
|
|
|
|
mtmd_audio_mel out_chunk;
|
|
|
out_chunk.n_len = n_len;
|
|
|
out_chunk.n_mel = out_full.n_mel;
|
|
|
- out_chunk.n_len_org = out_full.n_mel; // unused
|
|
|
+ out_chunk.n_len_org = out_full.n_mel; // unused
|
|
|
out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
|
|
|
|
|
|
for (int i = 0; i < out_full.n_mel; i++) {
|
|
|
- auto src = out_full.data.begin() + i*out_full.n_len + off;
|
|
|
+ auto src = out_full.data.begin() + i * out_full.n_len + off;
|
|
|
out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
|
|
|
}
|
|
|
|
|
|
@@ -541,18 +585,14 @@ bool mtmd_audio_preprocessor_whisper::preprocess(
|
|
|
//
|
|
|
|
|
|
void mtmd_audio_preprocessor_conformer::initialize() {
|
|
|
- g_cache.fill_sin_cos_table(hparams.audio_n_fft);
|
|
|
- g_cache.fill_hann_window(hparams.audio_window_len, true);
|
|
|
- g_cache.fill_mel_filterbank_matrix(
|
|
|
- hparams.n_mel_bins,
|
|
|
- hparams.audio_n_fft,
|
|
|
- hparams.audio_sample_rate);
|
|
|
+ cache.fill_sin_cos_table(hparams.audio_n_fft);
|
|
|
+ cache.fill_hann_window(hparams.audio_window_len, true);
|
|
|
+ cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
|
|
|
}
|
|
|
|
|
|
-bool mtmd_audio_preprocessor_conformer::preprocess(
|
|
|
- const float * samples,
|
|
|
- size_t n_samples,
|
|
|
- std::vector<mtmd_audio_mel> & output) {
|
|
|
+bool mtmd_audio_preprocessor_conformer::preprocess(const float * samples,
|
|
|
+ size_t n_samples,
|
|
|
+ std::vector<mtmd_audio_mel> & output) {
|
|
|
// empty audio
|
|
|
if (n_samples == 0) {
|
|
|
return false;
|
|
|
@@ -569,18 +609,15 @@ bool mtmd_audio_preprocessor_conformer::preprocess(
|
|
|
params.use_natural_log = true;
|
|
|
params.norm_per_feature = true;
|
|
|
|
|
|
- // make sure the global cache is initialized
|
|
|
- GGML_ASSERT(!g_cache.sin_vals.empty());
|
|
|
- GGML_ASSERT(!g_cache.cos_vals.empty());
|
|
|
- GGML_ASSERT(!g_cache.filters.data.empty());
|
|
|
+ // make sure the cache is initialized
|
|
|
+ GGML_ASSERT(!cache.sin_vals.empty());
|
|
|
+ GGML_ASSERT(!cache.cos_vals.empty());
|
|
|
+ GGML_ASSERT(!cache.filters.data.empty());
|
|
|
|
|
|
mtmd_audio_mel out_full;
|
|
|
- bool ok = log_mel_spectrogram(
|
|
|
- samples,
|
|
|
- n_samples,
|
|
|
- 4, // n_threads
|
|
|
- params,
|
|
|
- out_full);
|
|
|
+ bool ok = log_mel_spectrogram(samples, n_samples,
|
|
|
+ 4, // n_threads
|
|
|
+ params, cache, out_full);
|
|
|
if (!ok) {
|
|
|
return false;
|
|
|
}
|
|
|
@@ -588,3 +625,106 @@ bool mtmd_audio_preprocessor_conformer::preprocess(
|
|
|
output.push_back(std::move(out_full));
|
|
|
return true;
|
|
|
}
|
|
|
+
|
|
|
+//
|
|
|
+// mtmd_audio_streaming_istft implementation
|
|
|
+//
|
|
|
+
|
|
|
+mtmd_audio_streaming_istft::mtmd_audio_streaming_istft(int n_fft, int hop_length) :
|
|
|
+ n_fft(n_fft),
|
|
|
+ hop_length(hop_length),
|
|
|
+ n_fft_bins(n_fft / 2 + 1),
|
|
|
+ overlap_buffer(n_fft, 0.0f),
|
|
|
+ window_sum_buffer(n_fft, 0.0f),
|
|
|
+ padding_to_remove((n_fft - hop_length) / 2),
|
|
|
+ ifft_in(n_fft * 2 * 4, 0.0f), // extra space for recursive IFFT
|
|
|
+ ifft_out(n_fft * 2 * 4, 0.0f) {
|
|
|
+ cache.fill_sin_cos_table(n_fft);
|
|
|
+ cache.fill_hann_window(n_fft, true);
|
|
|
+}
|
|
|
+
|
|
|
+void mtmd_audio_streaming_istft::reset() {
|
|
|
+ std::fill(overlap_buffer.begin(), overlap_buffer.end(), 0.0f);
|
|
|
+ std::fill(window_sum_buffer.begin(), window_sum_buffer.end(), 0.0f);
|
|
|
+ padding_to_remove = (n_fft - hop_length) / 2;
|
|
|
+}
|
|
|
+
|
|
|
+std::vector<float> mtmd_audio_streaming_istft::process_frame(const float * frame_spectrum) {
|
|
|
+ std::vector<float> output(hop_length);
|
|
|
+
|
|
|
+ // copy frequencies
|
|
|
+ for (int j = 0; j < n_fft_bins; j++) {
|
|
|
+ ifft_in[j * 2 + 0] = frame_spectrum[j * 2 + 0];
|
|
|
+ ifft_in[j * 2 + 1] = frame_spectrum[j * 2 + 1];
|
|
|
+ }
|
|
|
+
|
|
|
+ // mirror negative frequencies
|
|
|
+ for (int j = 1; j < n_fft_bins - 1; j++) {
|
|
|
+ int mirror_idx = n_fft - j;
|
|
|
+ ifft_in[mirror_idx * 2 + 0] = ifft_in[j * 2 + 0];
|
|
|
+ ifft_in[mirror_idx * 2 + 1] = -ifft_in[j * 2 + 1]; // conjugate
|
|
|
+ }
|
|
|
+
|
|
|
+ ifft(cache, ifft_in.data(), n_fft, ifft_out.data());
|
|
|
+
|
|
|
+ // update window sum and overlap buffer
|
|
|
+ for (int j = 0; j < n_fft; j++) {
|
|
|
+ window_sum_buffer[j] += cache.hann_window[j] * cache.hann_window[j];
|
|
|
+ overlap_buffer[j] += ifft_out[j * 2] * cache.hann_window[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ // extract hop_length samples with normalization
|
|
|
+ for (int i = 0; i < hop_length; i++) {
|
|
|
+ if (window_sum_buffer[i] > 1e-8f) {
|
|
|
+ output[i] = overlap_buffer[i] / window_sum_buffer[i];
|
|
|
+ } else {
|
|
|
+ output[i] = overlap_buffer[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // shift buffers left by hop_length
|
|
|
+ std::copy(overlap_buffer.begin() + hop_length, overlap_buffer.end(), overlap_buffer.begin());
|
|
|
+ std::fill(overlap_buffer.end() - hop_length, overlap_buffer.end(), 0.0f);
|
|
|
+
|
|
|
+ std::copy(window_sum_buffer.begin() + hop_length, window_sum_buffer.end(), window_sum_buffer.begin());
|
|
|
+ std::fill(window_sum_buffer.end() - hop_length, window_sum_buffer.end(), 0.0f);
|
|
|
+
|
|
|
+ // Remove padding if needed
|
|
|
+ int to_remove = std::min(padding_to_remove, (int) output.size());
|
|
|
+ padding_to_remove -= to_remove;
|
|
|
+ output.erase(output.begin(), output.begin() + to_remove);
|
|
|
+
|
|
|
+ return output;
|
|
|
+}
|
|
|
+
|
|
|
+std::vector<float> mtmd_audio_streaming_istft::flush() {
|
|
|
+ std::vector<float> output;
|
|
|
+
|
|
|
+ // Extract remaining samples from overlap buffer
|
|
|
+ // Continue until we've extracted all meaningful samples
|
|
|
+ int remaining = n_fft - hop_length;
|
|
|
+ while (remaining > 0) {
|
|
|
+ int chunk_size = std::min(remaining, hop_length);
|
|
|
+
|
|
|
+ for (int i = 0; i < chunk_size; i++) {
|
|
|
+ float sample;
|
|
|
+ if (window_sum_buffer[i] > 1e-8f) {
|
|
|
+ sample = overlap_buffer[i] / window_sum_buffer[i];
|
|
|
+ } else {
|
|
|
+ sample = overlap_buffer[i];
|
|
|
+ }
|
|
|
+ output.push_back(sample);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Shift buffers
|
|
|
+ std::copy(overlap_buffer.begin() + chunk_size, overlap_buffer.end(), overlap_buffer.begin());
|
|
|
+ std::fill(overlap_buffer.end() - chunk_size, overlap_buffer.end(), 0.0f);
|
|
|
+
|
|
|
+ std::copy(window_sum_buffer.begin() + chunk_size, window_sum_buffer.end(), window_sum_buffer.begin());
|
|
|
+ std::fill(window_sum_buffer.end() - chunk_size, window_sum_buffer.end(), 0.0f);
|
|
|
+
|
|
|
+ remaining -= chunk_size;
|
|
|
+ }
|
|
|
+
|
|
|
+ return output;
|
|
|
+}
|