|
|
@@ -2506,6 +2506,112 @@ class NomicBertModel(BertModel):
|
|
|
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
|
|
|
|
|
|
|
|
+@Model.register("XLMRobertaModel")
|
|
|
+class XLMRobertaModel(BertModel):
|
|
|
+ model_arch = gguf.MODEL_ARCH.BERT
|
|
|
+
|
|
|
+ def __init__(self, *args, **kwargs):
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+
|
|
|
+ # we need the pad_token_id to know how to chop down position_embd matrix
|
|
|
+ if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
|
|
|
+ self._position_offset = 1 + pad_token_id
|
|
|
+ if "max_position_embeddings" in self.hparams:
|
|
|
+ self.hparams["max_position_embeddings"] -= self._position_offset
|
|
|
+ else:
|
|
|
+ self._position_offset = None
|
|
|
+
|
|
|
+ def set_vocab(self):
|
|
|
+ # to avoid TypeError: Descriptors cannot be created directly
|
|
|
+ # exception when importing sentencepiece_model_pb2
|
|
|
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
|
|
+ from sentencepiece import SentencePieceProcessor
|
|
|
+ from sentencepiece import sentencepiece_model_pb2 as model
|
|
|
+
|
|
|
+ tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
|
|
|
+ if not tokenizer_path.is_file():
|
|
|
+ raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
|
|
+
|
|
|
+ sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
|
|
|
+ sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
|
|
+ assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
|
|
|
+
|
|
|
+ add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
|
|
+ remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
|
|
|
+ precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
|
|
|
+
|
|
|
+ tokenizer = SentencePieceProcessor()
|
|
|
+ tokenizer.LoadFromFile(str(tokenizer_path))
|
|
|
+
|
|
|
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
|
|
+
|
|
|
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
|
|
+ scores: list[float] = [-10000.0] * vocab_size
|
|
|
+ toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
|
|
|
+
|
|
|
+ for token_id in range(tokenizer.vocab_size()):
|
|
|
+ piece = tokenizer.IdToPiece(token_id)
|
|
|
+ text = piece.encode("utf-8")
|
|
|
+ score = tokenizer.GetScore(token_id)
|
|
|
+
|
|
|
+ toktype = SentencePieceTokenTypes.NORMAL
|
|
|
+ if tokenizer.IsUnknown(token_id):
|
|
|
+ toktype = SentencePieceTokenTypes.UNKNOWN
|
|
|
+ elif tokenizer.IsControl(token_id):
|
|
|
+ toktype = SentencePieceTokenTypes.CONTROL
|
|
|
+ elif tokenizer.IsUnused(token_id):
|
|
|
+ toktype = SentencePieceTokenTypes.UNUSED
|
|
|
+ elif tokenizer.IsByte(token_id):
|
|
|
+ toktype = SentencePieceTokenTypes.BYTE
|
|
|
+
|
|
|
+ tokens[token_id] = text
|
|
|
+ scores[token_id] = score
|
|
|
+ toktypes[token_id] = toktype
|
|
|
+
|
|
|
+ if vocab_size > len(tokens):
|
|
|
+ pad_count = vocab_size - len(tokens)
|
|
|
+ logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
|
|
|
+ for i in range(1, pad_count + 1):
|
|
|
+ tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
|
|
|
+ scores.append(-1000.0)
|
|
|
+ toktypes.append(SentencePieceTokenTypes.UNUSED)
|
|
|
+
|
|
|
+ # realign tokens (see HF tokenizer code)
|
|
|
+ tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
|
|
|
+ scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
|
|
|
+ toktypes = [
|
|
|
+ SentencePieceTokenTypes.CONTROL,
|
|
|
+ SentencePieceTokenTypes.CONTROL,
|
|
|
+ SentencePieceTokenTypes.CONTROL,
|
|
|
+ SentencePieceTokenTypes.UNKNOWN,
|
|
|
+ ] + toktypes[3:-1]
|
|
|
+
|
|
|
+ self.gguf_writer.add_tokenizer_model("t5")
|
|
|
+ self.gguf_writer.add_tokenizer_pre("default")
|
|
|
+ self.gguf_writer.add_token_list(tokens)
|
|
|
+ self.gguf_writer.add_token_scores(scores)
|
|
|
+ self.gguf_writer.add_token_types(toktypes)
|
|
|
+ self.gguf_writer.add_add_space_prefix(add_prefix)
|
|
|
+ self.gguf_writer.add_token_type_count(1)
|
|
|
+ self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
|
|
|
+ if precompiled_charsmap:
|
|
|
+ self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
|
|
|
+
|
|
|
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
|
|
+ special_vocab.add_to_gguf(self.gguf_writer)
|
|
|
+
|
|
|
+ self.gguf_writer.add_add_bos_token(True)
|
|
|
+ self.gguf_writer.add_add_eos_token(True)
|
|
|
+
|
|
|
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
|
|
+ # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
|
|
|
+ if name == "embeddings.position_embeddings.weight":
|
|
|
+ if self._position_offset is not None:
|
|
|
+ data_torch = data_torch[self._position_offset:,:]
|
|
|
+
|
|
|
+ return super().modify_tensors(data_torch, name, bid)
|
|
|
+
|
|
|
+
|
|
|
@Model.register("GemmaForCausalLM")
|
|
|
class GemmaModel(Model):
|
|
|
model_arch = gguf.MODEL_ARCH.GEMMA
|