|
@@ -540,6 +540,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
|
{
|
|
{
|
|
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
|
|
|
+ { LLM_TENSOR_OUTPUT, "output"},
|
|
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
|
@@ -4300,9 +4301,9 @@ static bool llm_load_tensors(
|
|
|
{
|
|
{
|
|
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
|
|
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
|
|
|
|
|
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
|
|
|
|
- } else {
|
|
|
|
|
|
|
+
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
|
|
|
|
|
+ if (!model.output) {
|
|
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
|
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
|
|
|
ml.n_created--; // artificial tensor
|
|
ml.n_created--; // artificial tensor
|
|
|
ml.size_data += ggml_nbytes(model.output);
|
|
ml.size_data += ggml_nbytes(model.output);
|
|
@@ -4507,10 +4508,12 @@ static bool llm_load_tensors(
|
|
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
|
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
|
|
|
|
|
|
|
|
- // same as tok_embd, duplicated to allow offloading
|
|
|
|
|
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
|
|
|
- ml.n_created--; // artificial tensor
|
|
|
|
|
- ml.size_data += ggml_nbytes(model.output);
|
|
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
|
|
|
|
|
+ if (!model.output) {
|
|
|
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
|
|
|
|
|
+ ml.n_created--; // artificial tensor
|
|
|
|
|
+ ml.size_data += ggml_nbytes(model.output);
|
|
|
|
|
+ }
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < n_layer; ++i) {
|
|
for (int i = 0; i < n_layer; ++i) {
|