|
|
@@ -265,8 +265,8 @@ struct lora_merge_ctx {
|
|
|
fout.write((const char *)data.data(), data.size());
|
|
|
}
|
|
|
|
|
|
- printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
|
|
- printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
|
|
|
+ printf("%s : merged %zu tensors with lora adapters\n", __func__, n_merged);
|
|
|
+ printf("%s : wrote %zu tensors to output file\n", __func__, trans.size());
|
|
|
}
|
|
|
|
|
|
void copy_tensor(struct ggml_tensor * base) {
|
|
|
@@ -352,7 +352,7 @@ struct lora_merge_ctx {
|
|
|
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
|
|
|
delta = ggml_scale(ctx0, delta, scale);
|
|
|
cur = ggml_add(ctx0, delta, cur);
|
|
|
- printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
|
|
|
+ printf("%s : + merging from adapter[%zu] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
|
|
|
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
|
|
|
}
|
|
|
cur = ggml_cast(ctx0, cur, out->type);
|