|
|
@@ -333,28 +333,31 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11, int64_t
|
|
|
}
|
|
|
|
|
|
if (amd_wmma_available(cc)) {
|
|
|
- // RDNA 4 is consistently worse on rocblas
|
|
|
- // https://github.com/ggml-org/llama.cpp/pull/18537#issuecomment-3706422301
|
|
|
if (GGML_CUDA_CC_IS_RDNA3(cc)) {
|
|
|
- // High expert counts almost always better on MMQ
|
|
|
- // due to a large amount of graph splits
|
|
|
+ // High expert counts are almost always better on MMQ due to
|
|
|
+ // the synchronization overhead in the cuBLAS/hipBLAS path:
|
|
|
// https://github.com/ggml-org/llama.cpp/pull/18202
|
|
|
if (n_experts >= 64) {
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
+ // For some quantization types MMQ can have lower peak TOPS than hipBLAS
|
|
|
+ // so it's only faster for sufficiently small batch sizes:
|
|
|
switch (type) {
|
|
|
- // These quants are really bad on MMQ
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
+ return ne11 <= 128;
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
- // These quants are usually worse but not always
|
|
|
+ return ne11 <= (GGML_CUDA_CC_IS_RDNA3_0(cc) ? 128 : 256);
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
- return ne11 <= 128;
|
|
|
+ return GGML_CUDA_CC_IS_RDNA3_5(cc) || ne11 <= 128;
|
|
|
default:
|
|
|
return true;
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+ // For RDNA4 MMQ is consistently faster than dequantization + hipBLAS:
|
|
|
+ // https://github.com/ggml-org/llama.cpp/pull/18537#issuecomment-3706422301
|
|
|
return true;
|
|
|
}
|
|
|
|