|
|
@@ -4666,126 +4666,6 @@ struct llm_build_context {
|
|
|
ctx0 = nullptr;
|
|
|
}
|
|
|
}
|
|
|
- struct ggml_cgraph * build_orion() {
|
|
|
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
-
|
|
|
- const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
- GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
-
|
|
|
- struct ggml_tensor * cur;
|
|
|
- struct ggml_tensor * inpL;
|
|
|
-
|
|
|
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
|
|
- cb(inpL, "inp_embd", -1);
|
|
|
-
|
|
|
- // inp_pos - contains the positions
|
|
|
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
|
|
- cb(inp_pos, "inp_pos", -1);
|
|
|
-
|
|
|
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
|
|
- cb(KQ_mask, "KQ_mask", -1);
|
|
|
-
|
|
|
- // shift the entire K-cache if needed
|
|
|
- if (do_rope_shift) {
|
|
|
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
|
|
- }
|
|
|
-
|
|
|
- for (int il = 0; il < n_layer; ++il) {
|
|
|
- struct ggml_tensor * inpSA = inpL;
|
|
|
-
|
|
|
- // norm
|
|
|
- cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
|
|
- LLM_NORM, cb, il);
|
|
|
- cb(cur, "attn_norm", il);
|
|
|
-
|
|
|
- // self-attention
|
|
|
- {
|
|
|
- // compute Q and K and RoPE them
|
|
|
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
- cb(Qcur, "Qcur", il);
|
|
|
- // if (model.layers[il].bq) {
|
|
|
- // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
- // cb(Qcur, "Qcur", il);
|
|
|
- // }
|
|
|
-
|
|
|
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
- cb(Kcur, "Kcur", il);
|
|
|
- // if (model.layers[il].bk) {
|
|
|
- // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
- // cb(Kcur, "Kcur", il);
|
|
|
- // }
|
|
|
-
|
|
|
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
- cb(Vcur, "Vcur", il);
|
|
|
- // if (model.layers[il].bv) {
|
|
|
- // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
- // cb(Vcur, "Vcur", il);
|
|
|
- // }
|
|
|
-
|
|
|
- Qcur = ggml_rope_custom(
|
|
|
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
|
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
- );
|
|
|
- cb(Qcur, "Qcur", il);
|
|
|
-
|
|
|
- Kcur = ggml_rope_custom(
|
|
|
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
|
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
- ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
- );
|
|
|
- cb(Kcur, "Kcur", il);
|
|
|
-
|
|
|
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
|
|
- model.layers[il].wo, NULL,
|
|
|
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
- cb(cur, "kqv_out", il);
|
|
|
- }
|
|
|
-
|
|
|
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
- cb(ffn_inp, "ffn_inp", il);
|
|
|
-
|
|
|
- // feed-forward network
|
|
|
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
|
|
- LLM_NORM, cb, il);
|
|
|
- cb(cur, "ffn_norm", il);
|
|
|
-
|
|
|
- cur = llm_build_ffn(ctx0, cur,
|
|
|
- model.layers[il].ffn_up, NULL,
|
|
|
- model.layers[il].ffn_gate, NULL,
|
|
|
- model.layers[il].ffn_down, NULL,
|
|
|
- NULL,
|
|
|
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
- cb(cur, "ffn_out", il);
|
|
|
-
|
|
|
- cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
- cb(cur, "l_out", il);
|
|
|
-
|
|
|
- // input for next layer
|
|
|
- inpL = cur;
|
|
|
- }
|
|
|
-
|
|
|
- cur = inpL;
|
|
|
-
|
|
|
- cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
- model.output_norm, model.output_norm_b,
|
|
|
- LLM_NORM, cb, -1);
|
|
|
- cb(cur, "result_norm", -1);
|
|
|
-
|
|
|
- // lm_head
|
|
|
- cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
- cb(cur, "result_output", -1);
|
|
|
-
|
|
|
- ggml_build_forward_expand(gf, cur);
|
|
|
-
|
|
|
- return gf;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
|
|
|
struct ggml_cgraph * build_llama() {
|
|
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
@@ -6589,6 +6469,125 @@ struct llm_build_context {
|
|
|
|
|
|
return gf;
|
|
|
}
|
|
|
+
|
|
|
+ struct ggml_cgraph * build_orion() {
|
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ struct ggml_tensor * cur;
|
|
|
+ struct ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
|
|
+ cb(inpL, "inp_embd", -1);
|
|
|
+
|
|
|
+ // inp_pos - contains the positions
|
|
|
+ struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
|
|
+ cb(inp_pos, "inp_pos", -1);
|
|
|
+
|
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
|
+ struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
|
|
+ cb(KQ_mask, "KQ_mask", -1);
|
|
|
+
|
|
|
+ // shift the entire K-cache if needed
|
|
|
+ if (do_rope_shift) {
|
|
|
+ llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
|
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
|
|
+ LLM_NORM, cb, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ {
|
|
|
+ // compute Q and K and RoPE them
|
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ // if (model.layers[il].bq) {
|
|
|
+ // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ // cb(Qcur, "Qcur", il);
|
|
|
+ // }
|
|
|
+
|
|
|
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ // if (model.layers[il].bk) {
|
|
|
+ // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ // cb(Kcur, "Kcur", il);
|
|
|
+ // }
|
|
|
+
|
|
|
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ // if (model.layers[il].bv) {
|
|
|
+ // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ // cb(Vcur, "Vcur", il);
|
|
|
+ // }
|
|
|
+
|
|
|
+ Qcur = ggml_rope_custom(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
|
|
+ hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+
|
|
|
+ Kcur = ggml_rope_custom(
|
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
|
|
+ hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+
|
|
|
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
|
|
+ model.layers[il].wo, NULL,
|
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
|
+ cb(cur, "kqv_out", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // feed-forward network
|
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
|
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
|
|
+ LLM_NORM, cb, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ cur = llm_build_ffn(ctx0, cur,
|
|
|
+ model.layers[il].ffn_up, NULL,
|
|
|
+ model.layers[il].ffn_gate, NULL,
|
|
|
+ model.layers[il].ffn_down, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
|
+ model.output_norm, model.output_norm_b,
|
|
|
+ LLM_NORM, cb, -1);
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = ggml_mul_mat(ctx0, model.output, cur);
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+
|
|
|
+ return gf;
|
|
|
+ }
|
|
|
};
|
|
|
|
|
|
static struct ggml_cgraph * llama_build_graph(
|