|
@@ -1,9 +1,416 @@
|
|
|
-import argparse
|
|
|
|
|
|
|
+# coding=utf-8
|
|
|
|
|
+# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
|
|
|
|
+#
|
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
|
+#
|
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
+#
|
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
|
+# limitations under the License.
|
|
|
|
|
+""" PyTorch Siglip model. """
|
|
|
|
|
+# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
import os
|
|
import os
|
|
|
|
|
+import math
|
|
|
|
|
+import warnings
|
|
|
|
|
+
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+import torch
|
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
|
+import torch.utils.checkpoint
|
|
|
|
|
+from torch import nn
|
|
|
|
|
+from torch.nn.init import _calculate_fan_in_and_fan_out
|
|
|
|
|
+
|
|
|
|
|
+from transformers.activations import ACT2FN
|
|
|
|
|
+from transformers.modeling_utils import PreTrainedModel
|
|
|
|
|
+from transformers.configuration_utils import PretrainedConfig
|
|
|
|
|
+from transformers.utils import (
|
|
|
|
|
+ logging,
|
|
|
|
|
+)
|
|
|
|
|
+from transformers.utils import logging
|
|
|
|
|
+
|
|
|
|
|
+logger = logging.get_logger(__name__)
|
|
|
|
|
+
|
|
|
|
|
+class SiglipVisionConfig(PretrainedConfig):
|
|
|
|
|
+ r"""
|
|
|
|
|
+ This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
|
|
|
|
+ Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
|
|
|
|
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
|
|
|
|
+ [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
|
|
|
|
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
|
|
|
+ documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
+ Args:
|
|
|
|
|
+ hidden_size (`int`, *optional*, defaults to 768):
|
|
|
|
|
+ Dimensionality of the encoder layers and the pooler layer.
|
|
|
|
|
+ intermediate_size (`int`, *optional*, defaults to 3072):
|
|
|
|
|
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
|
|
|
+ num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
|
|
|
+ Number of hidden layers in the Transformer encoder.
|
|
|
|
|
+ num_attention_heads (`int`, *optional*, defaults to 12):
|
|
|
|
|
+ Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
|
|
+ num_channels (`int`, *optional*, defaults to 3):
|
|
|
|
|
+ Number of channels in the input images.
|
|
|
|
|
+ image_size (`int`, *optional*, defaults to 224):
|
|
|
|
|
+ The size (resolution) of each image.
|
|
|
|
|
+ patch_size (`int`, *optional*, defaults to 16):
|
|
|
|
|
+ The size (resolution) of each patch.
|
|
|
|
|
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
|
|
|
|
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
|
|
|
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
|
|
|
|
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
|
|
|
+ The epsilon used by the layer normalization layers.
|
|
|
|
|
+ attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
|
|
|
+ The dropout ratio for the attention probabilities.
|
|
|
|
|
+ Example:
|
|
|
|
|
+ ```python
|
|
|
|
|
+ >>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
|
|
|
|
+ >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
|
|
|
|
+ >>> configuration = SiglipVisionConfig()
|
|
|
|
|
+ >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
|
|
|
|
+ >>> model = SiglipVisionModel(configuration)
|
|
|
|
|
+ >>> # Accessing the model configuration
|
|
|
|
|
+ >>> configuration = model.config
|
|
|
|
|
+ ```"""
|
|
|
|
|
+
|
|
|
|
|
+ model_type = "siglip_vision_model"
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ hidden_size=768,
|
|
|
|
|
+ intermediate_size=3072,
|
|
|
|
|
+ num_hidden_layers=12,
|
|
|
|
|
+ num_attention_heads=12,
|
|
|
|
|
+ num_channels=3,
|
|
|
|
|
+ image_size=224,
|
|
|
|
|
+ patch_size=16,
|
|
|
|
|
+ hidden_act="gelu_pytorch_tanh",
|
|
|
|
|
+ layer_norm_eps=1e-6,
|
|
|
|
|
+ attention_dropout=0.0,
|
|
|
|
|
+ **kwargs,
|
|
|
|
|
+ ):
|
|
|
|
|
+ super().__init__(**kwargs)
|
|
|
|
|
+
|
|
|
|
|
+ self.hidden_size = hidden_size
|
|
|
|
|
+ self.intermediate_size = intermediate_size
|
|
|
|
|
+ self.num_hidden_layers = num_hidden_layers
|
|
|
|
|
+ self.num_attention_heads = num_attention_heads
|
|
|
|
|
+ self.num_channels = num_channels
|
|
|
|
|
+ self.patch_size = patch_size
|
|
|
|
|
+ self.image_size = image_size
|
|
|
|
|
+ self.attention_dropout = attention_dropout
|
|
|
|
|
+ self.layer_norm_eps = layer_norm_eps
|
|
|
|
|
+ self.hidden_act = hidden_act
|
|
|
|
|
+
|
|
|
|
|
+_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
|
|
|
|
+
|
|
|
|
|
+SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
|
|
|
+ "google/siglip-base-patch16-224",
|
|
|
|
|
+ # See all SigLIP models at https://huggingface.co/models?filter=siglip
|
|
|
|
|
+]
|
|
|
|
|
+
|
|
|
|
|
+# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
|
|
+def _get_unpad_data(attention_mask):
|
|
|
|
|
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
|
|
|
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
|
|
|
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
|
|
|
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
|
|
|
+ return (
|
|
|
|
|
+ indices,
|
|
|
|
|
+ cu_seqlens,
|
|
|
|
|
+ max_seqlen_in_batch,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _trunc_normal_(tensor, mean, std, a, b):
|
|
|
|
|
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
|
|
|
|
|
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
|
|
|
|
+ def norm_cdf(x):
|
|
|
|
|
+ # Computes standard normal cumulative distribution function
|
|
|
|
|
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
|
|
|
|
+
|
|
|
|
|
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
|
|
|
+ warnings.warn(
|
|
|
|
|
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
|
|
|
+ "The distribution of values may be incorrect.",
|
|
|
|
|
+ stacklevel=2,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # Values are generated by using a truncated uniform distribution and
|
|
|
|
|
+ # then using the inverse CDF for the normal distribution.
|
|
|
|
|
+ # Get upper and lower cdf values
|
|
|
|
|
+ l = norm_cdf((a - mean) / std)
|
|
|
|
|
+ u = norm_cdf((b - mean) / std)
|
|
|
|
|
+
|
|
|
|
|
+ # Uniformly fill tensor with values from [l, u], then translate to
|
|
|
|
|
+ # [2l-1, 2u-1].
|
|
|
|
|
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
|
|
|
|
|
+
|
|
|
|
|
+ # Use inverse cdf transform for normal distribution to get truncated
|
|
|
|
|
+ # standard normal
|
|
|
|
|
+ if tensor.dtype in [torch.float16, torch.bfloat16]:
|
|
|
|
|
+ # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
|
|
|
|
+ og_dtype = tensor.dtype
|
|
|
|
|
+ tensor = tensor.to(torch.float32)
|
|
|
|
|
+ tensor.erfinv_()
|
|
|
|
|
+ tensor = tensor.to(og_dtype)
|
|
|
|
|
+ else:
|
|
|
|
|
+ tensor.erfinv_()
|
|
|
|
|
+
|
|
|
|
|
+ # Transform to proper mean, std
|
|
|
|
|
+ tensor.mul_(std * math.sqrt(2.0))
|
|
|
|
|
+ tensor.add_(mean)
|
|
|
|
|
+
|
|
|
|
|
+ # Clamp to ensure it's in the proper range
|
|
|
|
|
+ if tensor.dtype == torch.float16:
|
|
|
|
|
+ # The `clamp_` op is not (yet?) defined in float16+cpu
|
|
|
|
|
+ tensor = tensor.to(torch.float32)
|
|
|
|
|
+ tensor.clamp_(min=a, max=b)
|
|
|
|
|
+ tensor = tensor.to(torch.float16)
|
|
|
|
|
+ else:
|
|
|
|
|
+ tensor.clamp_(min=a, max=b)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def trunc_normal_tf_(
|
|
|
|
|
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
|
|
|
|
+):
|
|
|
|
|
+ """Fills the input Tensor with values drawn from a truncated
|
|
|
|
|
+ normal distribution. The values are effectively drawn from the
|
|
|
|
|
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
|
|
|
|
+ with values outside :math:`[a, b]` redrawn until they are within
|
|
|
|
|
+ the bounds. The method used for generating the random values works
|
|
|
|
|
+ best when :math:`a \\leq \text{mean} \\leq b`.
|
|
|
|
|
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
|
|
|
|
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
|
|
|
|
+ and the result is subsquently scaled and shifted by the mean and std args.
|
|
|
|
|
+ Args:
|
|
|
|
|
+ tensor: an n-dimensional `torch.Tensor`
|
|
|
|
|
+ mean: the mean of the normal distribution
|
|
|
|
|
+ std: the standard deviation of the normal distribution
|
|
|
|
|
+ a: the minimum cutoff value
|
|
|
|
|
+ b: the maximum cutoff value
|
|
|
|
|
+ """
|
|
|
|
|
+ with torch.no_grad():
|
|
|
|
|
+ _trunc_normal_(tensor, 0, 1.0, a, b)
|
|
|
|
|
+ tensor.mul_(std).add_(mean)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
|
|
|
|
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
|
|
|
+ denom = fan_in
|
|
|
|
|
+ if mode == "fan_in":
|
|
|
|
|
+ denom = fan_in
|
|
|
|
|
+ elif mode == "fan_out":
|
|
|
|
|
+ denom = fan_out
|
|
|
|
|
+ elif mode == "fan_avg":
|
|
|
|
|
+ denom = (fan_in + fan_out) / 2
|
|
|
|
|
+
|
|
|
|
|
+ variance = scale / denom
|
|
|
|
|
+
|
|
|
|
|
+ if distribution == "truncated_normal":
|
|
|
|
|
+ # constant is stddev of standard normal truncated to (-2, 2)
|
|
|
|
|
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
|
|
|
|
+ elif distribution == "normal":
|
|
|
|
|
+ with torch.no_grad():
|
|
|
|
|
+ tensor.normal_(std=math.sqrt(variance))
|
|
|
|
|
+ elif distribution == "uniform":
|
|
|
|
|
+ bound = math.sqrt(3 * variance)
|
|
|
|
|
+ with torch.no_grad():
|
|
|
|
|
+ tensor.uniform_(-bound, bound)
|
|
|
|
|
+ else:
|
|
|
|
|
+ raise ValueError(f"invalid distribution {distribution}")
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def lecun_normal_(tensor):
|
|
|
|
|
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def default_flax_embed_init(tensor):
|
|
|
|
|
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
|
|
|
|
+
|
|
|
|
|
+class SiglipVisionEmbeddings(nn.Module):
|
|
|
|
|
+ def __init__(self, config: SiglipVisionConfig):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.config = config
|
|
|
|
|
+ self.embed_dim = config.hidden_size
|
|
|
|
|
+ self.image_size = config.image_size
|
|
|
|
|
+ self.patch_size = config.patch_size
|
|
|
|
|
+
|
|
|
|
|
+ self.patch_embedding = nn.Conv2d(
|
|
|
|
|
+ in_channels=config.num_channels,
|
|
|
|
|
+ out_channels=self.embed_dim,
|
|
|
|
|
+ kernel_size=self.patch_size,
|
|
|
|
|
+ stride=self.patch_size,
|
|
|
|
|
+ padding="valid",
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ self.num_patches_per_side = self.image_size // self.patch_size
|
|
|
|
|
+ self.num_patches = self.num_patches_per_side**2
|
|
|
|
|
+ self.num_positions = self.num_patches
|
|
|
|
|
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
|
|
|
+
|
|
|
|
|
+class SiglipAttention(nn.Module):
|
|
|
|
|
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
|
+
|
|
|
|
|
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
|
|
|
|
+ def __init__(self, config):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.config = config
|
|
|
|
|
+ self.embed_dim = config.hidden_size
|
|
|
|
|
+ self.num_heads = config.num_attention_heads
|
|
|
|
|
+ self.head_dim = self.embed_dim // self.num_heads
|
|
|
|
|
+ if self.head_dim * self.num_heads != self.embed_dim:
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
|
|
|
+ f" {self.num_heads})."
|
|
|
|
|
+ )
|
|
|
|
|
+ self.scale = self.head_dim**-0.5
|
|
|
|
|
+ self.dropout = config.attention_dropout
|
|
|
|
|
+
|
|
|
|
|
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
|
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
|
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
|
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
|
+
|
|
|
|
|
+# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
|
|
|
|
+class SiglipMLP(nn.Module):
|
|
|
|
|
+ def __init__(self, config):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.config = config
|
|
|
|
|
+ self.activation_fn = ACT2FN[config.hidden_act]
|
|
|
|
|
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
|
|
|
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
|
|
|
|
+class SiglipEncoderLayer(nn.Module):
|
|
|
|
|
+ def __init__(self, config: SiglipVisionConfig):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.embed_dim = config.hidden_size
|
|
|
|
|
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
|
|
|
|
+ self.self_attn = (
|
|
|
|
|
+ SiglipAttention(config)
|
|
|
|
|
+ )
|
|
|
|
|
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
|
+ self.mlp = SiglipMLP(config)
|
|
|
|
|
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
|
+
|
|
|
|
|
+class SiglipPreTrainedModel(PreTrainedModel):
|
|
|
|
|
+ """
|
|
|
|
|
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
|
|
|
+ models.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ config_class = SiglipVisionConfig
|
|
|
|
|
+ base_model_prefix = "siglip"
|
|
|
|
|
+ supports_gradient_checkpointing = True
|
|
|
|
|
+
|
|
|
|
|
+ def _init_weights(self, module):
|
|
|
|
|
+ """Initialize the weights"""
|
|
|
|
|
+
|
|
|
|
|
+ if isinstance(module, SiglipVisionEmbeddings):
|
|
|
|
|
+ width = self.config.hidden_size
|
|
|
|
|
+ nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
|
|
|
|
+ elif isinstance(module, nn.Embedding):
|
|
|
|
|
+ default_flax_embed_init(module.weight)
|
|
|
|
|
+ elif isinstance(module, SiglipAttention):
|
|
|
|
|
+ nn.init.normal_(module.q_proj.weight)
|
|
|
|
|
+ nn.init.normal_(module.k_proj.weight)
|
|
|
|
|
+ nn.init.normal_(module.v_proj.weight)
|
|
|
|
|
+ nn.init.normal_(module.out_proj.weight)
|
|
|
|
|
+ nn.init.zeros_(module.q_proj.bias)
|
|
|
|
|
+ nn.init.zeros_(module.k_proj.bias)
|
|
|
|
|
+ nn.init.zeros_(module.v_proj.bias)
|
|
|
|
|
+ nn.init.zeros_(module.out_proj.bias)
|
|
|
|
|
+ elif isinstance(module, SiglipMLP):
|
|
|
|
|
+ nn.init.normal_(module.fc1.weight)
|
|
|
|
|
+ nn.init.normal_(module.fc2.weight)
|
|
|
|
|
+ nn.init.normal_(module.fc1.bias, std=1e-6)
|
|
|
|
|
+ nn.init.normal_(module.fc2.bias, std=1e-6)
|
|
|
|
|
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
|
|
|
+ lecun_normal_(module.weight)
|
|
|
|
|
+ if module.bias is not None:
|
|
|
|
|
+ nn.init.zeros_(module.bias)
|
|
|
|
|
+ elif isinstance(module, nn.LayerNorm):
|
|
|
|
|
+ module.bias.data.zero_()
|
|
|
|
|
+ module.weight.data.fill_(1.0)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+SIGLIP_START_DOCSTRING = r"""
|
|
|
|
|
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
|
|
|
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
|
|
|
+ etc.)
|
|
|
|
|
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
|
|
|
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
|
|
|
+ and behavior.
|
|
|
|
|
+ Parameters:
|
|
|
|
|
+ config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
|
|
|
|
|
+ Initializing with a config file does not load the weights associated with the model, only the
|
|
|
|
|
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
|
|
+"""
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
|
|
|
|
+ Args:
|
|
|
|
|
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
|
|
|
|
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
|
|
|
|
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
|
|
|
|
+ output_attentions (`bool`, *optional*):
|
|
|
|
|
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
|
|
|
+ tensors for more detail.
|
|
|
|
|
+ output_hidden_states (`bool`, *optional*):
|
|
|
|
|
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
|
|
|
+ more detail.
|
|
|
|
|
+ return_dict (`bool`, *optional*):
|
|
|
|
|
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
+"""
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
|
|
|
|
+class SiglipEncoder(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
|
|
|
+ [`SiglipEncoderLayer`].
|
|
|
|
|
+ Args:
|
|
|
|
|
+ config: SiglipConfig
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self, config: SiglipVisionConfig):
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.config = config
|
|
|
|
|
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
|
+ self.gradient_checkpointing = False
|
|
|
|
|
+
|
|
|
|
|
+class SiglipVisionTransformer(SiglipPreTrainedModel):
|
|
|
|
|
+ config_class = SiglipVisionConfig
|
|
|
|
|
+ main_input_name = "pixel_values"
|
|
|
|
|
+ _supports_flash_attn_2 = True
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self, config: SiglipVisionConfig):
|
|
|
|
|
+ super().__init__(config)
|
|
|
|
|
+ self.config = config
|
|
|
|
|
+ embed_dim = config.hidden_size
|
|
|
|
|
+
|
|
|
|
|
+ self.embeddings = SiglipVisionEmbeddings(config)
|
|
|
|
|
+ self.encoder = SiglipEncoder(config)
|
|
|
|
|
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
|
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
|
|
|
|
+
|
|
|
|
|
+ # Initialize weights and apply final processing
|
|
|
|
|
+ self.post_init()
|
|
|
|
|
+
|
|
|
|
|
+ def get_input_embeddings(self) -> nn.Module:
|
|
|
|
|
+ return self.embeddings.patch_embedding
|
|
|
|
|
+
|
|
|
|
|
+import argparse
|
|
|
import json
|
|
import json
|
|
|
import re
|
|
import re
|
|
|
|
|
|
|
|
-import torch
|
|
|
|
|
import numpy as np
|
|
import numpy as np
|
|
|
from gguf import *
|
|
from gguf import *
|
|
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
|
@@ -94,6 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
|
|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
|
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
|
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
|
|
|
|
+ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2)
|
|
|
|
|
|
|
|
# with proper
|
|
# with proper
|
|
|
args = ap.parse_args()
|
|
args = ap.parse_args()
|
|
@@ -135,6 +543,15 @@ if args.use_f32:
|
|
|
# model = CLIPModel.from_pretrained(dir_model)
|
|
# model = CLIPModel.from_pretrained(dir_model)
|
|
|
# processor = CLIPProcessor.from_pretrained(dir_model)
|
|
# processor = CLIPProcessor.from_pretrained(dir_model)
|
|
|
|
|
|
|
|
|
|
+minicpmv_version = args.minicpmv_version
|
|
|
|
|
+emb_dim = 4096
|
|
|
|
|
+if minicpmv_version == 1:
|
|
|
|
|
+ emb_dim = 2304
|
|
|
|
|
+elif minicpmv_version == 2:
|
|
|
|
|
+ emb_dim = 4096
|
|
|
|
|
+elif minicpmv_version == 3:
|
|
|
|
|
+ emb_dim = 3584
|
|
|
|
|
+
|
|
|
default_vision_config = {
|
|
default_vision_config = {
|
|
|
"hidden_size": 1152,
|
|
"hidden_size": 1152,
|
|
|
"image_size": 980,
|
|
"image_size": 980,
|
|
@@ -144,8 +561,12 @@ default_vision_config = {
|
|
|
"num_hidden_layers": 27,
|
|
"num_hidden_layers": 27,
|
|
|
"patch_size": 14,
|
|
"patch_size": 14,
|
|
|
}
|
|
}
|
|
|
|
|
+
|
|
|
vision_config = Idefics2VisionConfig(**default_vision_config)
|
|
vision_config = Idefics2VisionConfig(**default_vision_config)
|
|
|
model = Idefics2VisionTransformer(vision_config)
|
|
model = Idefics2VisionTransformer(vision_config)
|
|
|
|
|
+if minicpmv_version == 3:
|
|
|
|
|
+ vision_config = SiglipVisionConfig(**default_vision_config)
|
|
|
|
|
+ model = SiglipVisionTransformer(vision_config)
|
|
|
|
|
|
|
|
processor = None
|
|
processor = None
|
|
|
# if model.attn_pool is not None:
|
|
# if model.attn_pool is not None:
|
|
@@ -158,6 +579,7 @@ fname_middle = None
|
|
|
has_text_encoder = True
|
|
has_text_encoder = True
|
|
|
has_vision_encoder = True
|
|
has_vision_encoder = True
|
|
|
has_minicpmv_projector = False
|
|
has_minicpmv_projector = False
|
|
|
|
|
+
|
|
|
if args.text_only:
|
|
if args.text_only:
|
|
|
fname_middle = "text-"
|
|
fname_middle = "text-"
|
|
|
has_vision_encoder = False
|
|
has_vision_encoder = False
|
|
@@ -165,6 +587,7 @@ elif args.minicpmv_projector is not None:
|
|
|
fname_middle = "mmproj-"
|
|
fname_middle = "mmproj-"
|
|
|
has_text_encoder = False
|
|
has_text_encoder = False
|
|
|
has_minicpmv_projector = True
|
|
has_minicpmv_projector = True
|
|
|
|
|
+ minicpmv_version = 3
|
|
|
elif args.vision_only:
|
|
elif args.vision_only:
|
|
|
fname_middle = "vision-"
|
|
fname_middle = "vision-"
|
|
|
has_text_encoder = False
|
|
has_text_encoder = False
|
|
@@ -189,6 +612,7 @@ elif has_minicpmv_projector:
|
|
|
fout.add_description("image encoder for MiniCPM-V")
|
|
fout.add_description("image encoder for MiniCPM-V")
|
|
|
# add projector type
|
|
# add projector type
|
|
|
fout.add_string("clip.projector_type", "resampler")
|
|
fout.add_string("clip.projector_type", "resampler")
|
|
|
|
|
+ fout.add_int32("clip.minicpmv_version", minicpmv_version)
|
|
|
else:
|
|
else:
|
|
|
fout.add_description("two-tower CLIP model")
|
|
fout.add_description("two-tower CLIP model")
|
|
|
|
|
|
|
@@ -274,11 +698,11 @@ def _replace_name_resampler(s, v):
|
|
|
if re.match("resampler.pos_embed", s):
|
|
if re.match("resampler.pos_embed", s):
|
|
|
return {
|
|
return {
|
|
|
s: v,
|
|
s: v,
|
|
|
- re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
|
|
|
|
|
|
+ re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
|
|
|
}
|
|
}
|
|
|
if re.match("resampler.proj", s):
|
|
if re.match("resampler.proj", s):
|
|
|
return {
|
|
return {
|
|
|
- re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
|
|
|
|
|
|
+ re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
|
|
|
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
|
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
|
|
}
|
|
}
|
|
|
if re.match("resampler.attn.in_proj_.*", s):
|
|
if re.match("resampler.attn.in_proj_.*", s):
|