|
|
@@ -1389,6 +1389,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
// Add additional layer/vocab/etc checks here for other model sizes
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
}
|
|
|
+
|
|
|
+ // For Granite MoE Shared
|
|
|
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
|
|
|
} break;
|
|
|
case LLM_ARCH_CHAMELEON:
|
|
|
{
|
|
|
@@ -1772,6 +1775,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
|
|
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
|
|
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
|
|
+
|
|
|
+ // For Granite MoE Shared
|
|
|
+ if (hparams.n_ff_shexp > 0) {
|
|
|
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
|
|
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
|
|
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
} break;
|
|
|
@@ -4385,10 +4395,13 @@ void llama_model::print_info() const {
|
|
|
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
|
|
}
|
|
|
|
|
|
- if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
|
|
|
+ if (arch == LLM_ARCH_MINICPM ||
|
|
|
+ arch == LLM_ARCH_GRANITE ||
|
|
|
+ arch == LLM_ARCH_GRANITE_MOE) {
|
|
|
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
|
|
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
|
|
+ LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
|
|
}
|
|
|
|
|
|
if (arch == LLM_ARCH_BAILINGMOE) {
|
|
|
@@ -4598,11 +4611,6 @@ struct llm_build_llama : public llm_graph_context {
|
|
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
}
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_residual_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
- }
|
|
|
-
|
|
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
cb(ffn_inp, "ffn_inp", il);
|
|
|
|
|
|
@@ -4674,11 +4682,6 @@ struct llm_build_llama : public llm_graph_context {
|
|
|
cb(cur, "ffn_moe_out", il);
|
|
|
}
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_residual_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
- }
|
|
|
-
|
|
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
cb(cur, "ffn_out", il);
|
|
|
|
|
|
@@ -4701,11 +4704,6 @@ struct llm_build_llama : public llm_graph_context {
|
|
|
// lm_head
|
|
|
cur = build_lora_mm(model.output, cur);
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_logit_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
|
|
- }
|
|
|
-
|
|
|
cb(cur, "result_output", -1);
|
|
|
res->t_logits = cur;
|
|
|
|
|
|
@@ -4816,11 +4814,6 @@ struct llm_build_deci : public llm_graph_context {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_residual_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
- }
|
|
|
-
|
|
|
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
|
|
|
ggml_tensor * ffn_inp = cur;
|
|
|
if (n_head > 0) {
|
|
|
@@ -4844,11 +4837,6 @@ struct llm_build_deci : public llm_graph_context {
|
|
|
cb(cur, "ffn_out", il);
|
|
|
}
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_residual_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
- }
|
|
|
-
|
|
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
cb(cur, "ffn_out", il);
|
|
|
|
|
|
@@ -4871,11 +4859,6 @@ struct llm_build_deci : public llm_graph_context {
|
|
|
// lm_head
|
|
|
cur = build_lora_mm(model.output, cur);
|
|
|
|
|
|
- // For Granite architecture
|
|
|
- if (hparams.f_logit_scale) {
|
|
|
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
|
|
- }
|
|
|
-
|
|
|
cb(cur, "result_output", -1);
|
|
|
res->t_logits = cur;
|
|
|
|
|
|
@@ -12214,6 +12197,195 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
|
|
|
}
|
|
|
};
|
|
|
|
|
|
+
|
|
|
+struct llm_build_granite : public llm_graph_context {
|
|
|
+ llm_build_granite(
|
|
|
+ const llama_model & model,
|
|
|
+ const llm_graph_params & params,
|
|
|
+ ggml_cgraph * gf,
|
|
|
+ const bool use_rope = true)
|
|
|
+ : llm_graph_context(params) {
|
|
|
+
|
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
+
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
|
+
|
|
|
+ ggml_tensor * cur;
|
|
|
+ ggml_tensor * inpL;
|
|
|
+
|
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
|
+
|
|
|
+ // inp_pos - built only if rope enabled
|
|
|
+ ggml_tensor * inp_pos = nullptr;
|
|
|
+
|
|
|
+ auto * inp_attn = build_attn_inp_kv_unified();
|
|
|
+
|
|
|
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
|
+ ggml_tensor * inpSA = inpL;
|
|
|
+
|
|
|
+ // norm
|
|
|
+ cur = build_norm(inpL,
|
|
|
+ model.layers[il].attn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "attn_norm", il);
|
|
|
+
|
|
|
+ // self-attention
|
|
|
+ {
|
|
|
+ // compute Q and K and (optionally) RoPE them
|
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ if (model.layers[il].bq) {
|
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ if (model.layers[il].bk) {
|
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ if (model.layers[il].bv) {
|
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
|
+
|
|
|
+ if (use_rope) {
|
|
|
+
|
|
|
+ if (!inp_pos) {
|
|
|
+ inp_pos = build_inp_pos();
|
|
|
+ }
|
|
|
+ ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
|
|
+ Qcur = ggml_rope_ext(
|
|
|
+ ctx0, Qcur, inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+
|
|
|
+ Kcur = ggml_rope_ext(
|
|
|
+ ctx0, Kcur, inp_pos, rope_factors,
|
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
+ );
|
|
|
+ }
|
|
|
+
|
|
|
+ cb(Qcur, "Qcur", il);
|
|
|
+ cb(Kcur, "Kcur", il);
|
|
|
+ cb(Vcur, "Vcur", il);
|
|
|
+
|
|
|
+ cur = build_attn(inp_attn, gf,
|
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
|
|
+ cb(cur, "attn_out", il);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (il == n_layer - 1) {
|
|
|
+ // skip computing output for unused tokens
|
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
|
+ }
|
|
|
+
|
|
|
+ // For Granite architectures - scale residual
|
|
|
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
|
+
|
|
|
+ // feed-forward network (non-MoE)
|
|
|
+ if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
|
+
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ cur = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ // MoE branch
|
|
|
+ cur = build_norm(ffn_inp,
|
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
|
+ LLM_NORM_RMS, il);
|
|
|
+ cb(cur, "ffn_norm", il);
|
|
|
+
|
|
|
+ ggml_tensor * moe_out = build_moe_ffn(cur,
|
|
|
+ model.layers[il].ffn_gate_inp,
|
|
|
+ model.layers[il].ffn_up_exps,
|
|
|
+ model.layers[il].ffn_gate_exps,
|
|
|
+ model.layers[il].ffn_down_exps,
|
|
|
+ nullptr,
|
|
|
+ n_expert, n_expert_used,
|
|
|
+ LLM_FFN_SILU, true,
|
|
|
+ false, 0.0,
|
|
|
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
|
+ il);
|
|
|
+ cb(moe_out, "ffn_moe_out", il);
|
|
|
+
|
|
|
+ // For Granite MoE Shared
|
|
|
+ if (hparams.n_ff_shexp > 0) {
|
|
|
+ ggml_tensor * ffn_shexp = build_ffn(cur,
|
|
|
+ model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
|
+ model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
|
+ NULL,
|
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
|
+ cb(ffn_shexp, "ffn_shexp", il);
|
|
|
+
|
|
|
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+ } else {
|
|
|
+ cur = moe_out;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // For Granite architectures - scale residual
|
|
|
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
+ cb(cur, "ffn_out", il);
|
|
|
+
|
|
|
+ cur = build_cvec(cur, il);
|
|
|
+ cb(cur, "l_out", il);
|
|
|
+
|
|
|
+ // input for next layer
|
|
|
+ inpL = cur;
|
|
|
+ }
|
|
|
+
|
|
|
+ cur = inpL;
|
|
|
+
|
|
|
+ cur = build_norm(cur,
|
|
|
+ model.output_norm, NULL,
|
|
|
+ LLM_NORM_RMS, -1);
|
|
|
+
|
|
|
+ cb(cur, "result_norm", -1);
|
|
|
+ res->t_embd = cur;
|
|
|
+
|
|
|
+ // lm_head
|
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
|
+
|
|
|
+ // For Granite architectures - scale logits
|
|
|
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
|
|
+ cb(cur, "result_output", -1);
|
|
|
+ res->t_logits = cur;
|
|
|
+
|
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
// ref: https://github.com/facebookresearch/chameleon
|
|
|
// based on the original build_llama() function, changes:
|
|
|
// * qk-norm
|
|
|
@@ -12921,8 +13093,6 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
|
case LLM_ARCH_LLAMA:
|
|
|
case LLM_ARCH_LLAMA4:
|
|
|
case LLM_ARCH_MINICPM:
|
|
|
- case LLM_ARCH_GRANITE:
|
|
|
- case LLM_ARCH_GRANITE_MOE:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_llama>(*this, params, gf);
|
|
|
} break;
|
|
|
@@ -13153,6 +13323,11 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
|
|
|
} break;
|
|
|
+ case LLM_ARCH_GRANITE:
|
|
|
+ case LLM_ARCH_GRANITE_MOE:
|
|
|
+ {
|
|
|
+ llm = std::make_unique<llm_build_granite>(*this, params, gf);
|
|
|
+ } break;
|
|
|
case LLM_ARCH_CHAMELEON:
|
|
|
{
|
|
|
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
|