|
|
@@ -4,6 +4,7 @@
|
|
|
#include <atomic>
|
|
|
#include <sstream>
|
|
|
#include <vector>
|
|
|
+#include <limits>
|
|
|
|
|
|
#define CL_TARGET_OPENCL_VERSION 110
|
|
|
#include <clblast.h>
|
|
|
@@ -604,21 +605,44 @@ struct cl_buffer {
|
|
|
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
|
|
|
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
|
|
-static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
|
|
|
+static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
|
|
|
scoped_spin_lock lock(g_cl_pool_lock);
|
|
|
cl_int err;
|
|
|
|
|
|
+ int best_i = -1;
|
|
|
+ size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
|
|
|
+ int worst_i = -1;
|
|
|
+ size_t worst_size = 0; //largest unused buffer seen so far
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
|
|
- cl_buffer& b = g_cl_buffer_pool[i];
|
|
|
- if (b.size > 0 && b.size >= size) {
|
|
|
- cl_mem mem = b.mem;
|
|
|
- *actual_size = b.size;
|
|
|
- b.size = 0;
|
|
|
- return mem;
|
|
|
+ cl_buffer &b = g_cl_buffer_pool[i];
|
|
|
+ if (b.size > 0 && b.size >= size && b.size < best_size)
|
|
|
+ {
|
|
|
+ best_i = i;
|
|
|
+ best_size = b.size;
|
|
|
+ }
|
|
|
+ if (b.size > 0 && b.size > worst_size)
|
|
|
+ {
|
|
|
+ worst_i = i;
|
|
|
+ worst_size = b.size;
|
|
|
}
|
|
|
}
|
|
|
+ if(best_i!=-1) //found the smallest buffer that fits our needs
|
|
|
+ {
|
|
|
+ cl_buffer& b = g_cl_buffer_pool[best_i];
|
|
|
+ cl_mem mem = b.mem;
|
|
|
+ *actual_size = b.size;
|
|
|
+ b.size = 0;
|
|
|
+ return mem;
|
|
|
+ }
|
|
|
+ if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
|
|
|
+ {
|
|
|
+ cl_buffer& b = g_cl_buffer_pool[worst_i];
|
|
|
+ cl_mem mem = b.mem;
|
|
|
+ b.size = 0;
|
|
|
+ clReleaseMemObject(mem);
|
|
|
+ }
|
|
|
cl_mem mem;
|
|
|
- CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err));
|
|
|
+ CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
|
|
|
*actual_size = size;
|
|
|
return mem;
|
|
|
}
|
|
|
@@ -692,9 +716,10 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
|
|
size_t x_size;
|
|
|
size_t d_size;
|
|
|
|
|
|
- cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0
|
|
|
+ cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
|
|
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
|
|
|
- cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst
|
|
|
+ cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
|
|
+
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
@@ -792,10 +817,10 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|
|
if (src0->backend == GGML_BACKEND_CL) {
|
|
|
d_X = (cl_mem) src0->data;
|
|
|
} else {
|
|
|
- d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
|
|
|
+ d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
|
|
}
|
|
|
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
|
|
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
|
|
+ cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
|
+ cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
@@ -868,10 +893,10 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|
|
if (src0->backend == GGML_BACKEND_CL) {
|
|
|
d_X = (cl_mem) src0->data;
|
|
|
} else {
|
|
|
- d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
|
|
|
+ d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
|
|
}
|
|
|
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
|
|
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
|
|
+ cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
|
|
|
+ cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
|
|
|
|
|
|
bool src1_cont_rows = nb10 == sizeof(float);
|
|
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
|
|
@@ -970,13 +995,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|
|
size_t q_size;
|
|
|
cl_mem d_X;
|
|
|
if (!mul_mat_vec) {
|
|
|
- d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
|
|
|
+ d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
|
}
|
|
|
- cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
|
|
- cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
|
|
+ cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
|
+ cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
|
cl_mem d_Q;
|
|
|
if (src0->backend == GGML_BACKEND_CPU) {
|
|
|
- d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
|
|
|
+ d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
|
}
|
|
|
|
|
|
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
|
|
|
@@ -1143,7 +1168,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
|
|
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
|
|
|
|
|
|
size_t q_size;
|
|
|
- cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
|
|
|
+ cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
|
|
|
|
// copy tensor to device
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|