Просмотр исходного кода

ggml : check tensor name lengths in gguf files (#10100)

Diego Devesa 1 год назад
Родитель
Сommit
dea5e86051
2 измененных файлов с 41 добавлено и 11 удалено
  1. 36 9
      ggml/src/ggml.c
  2. 5 2
      src/llama.cpp

+ 36 - 9
ggml/src/ggml.c

@@ -22102,18 +22102,46 @@ static size_t gguf_type_size(enum gguf_type type) {
     return GGUF_TYPE_SIZE[type];
 }
 
-static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
-    GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
-    GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
+static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
+    if (info->n_dims > GGML_MAX_DIMS) {
+        fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
+        return false;
+    }
+
+    if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
+        fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
+        return false;
+    }
+
+    if (strlen(info->name.data) >= GGML_MAX_NAME) {
+        fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
+        return false;
+    }
 
     for (uint32_t i = 0; i < info->n_dims; ++i) {
-        GGML_ASSERT(info->ne[i] > 0);
+        if (info->ne[i] <= 0) {
+            fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
+            return false;
+        }
     }
 
     // prevent overflow for total number of elements
-    GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
-    GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
-    GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
+    if (INT64_MAX/info->ne[1] <= info->ne[0]) {
+        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
+        return false;
+    }
+
+    if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
+        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
+        return false;
+    }
+
+    if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
+        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
+        return false;
+    }
+
+    return true;
 }
 
 static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
@@ -22414,8 +22442,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
             ok = ok && gguf_fread_el (file, &info->type,   sizeof(info->type),    &offset);
             ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset),  &offset);
 
-            // TODO: return an error instead of crashing with GGML_ASSERT
-            gguf_tensor_info_sanitize(info);
+            ok = ok && gguf_tensor_info_sanitize(info);
 
             // make sure there is no duplicated tensor names
             for (uint64_t j = 0; j < i && ok; ++j) {

+ 5 - 2
src/llama.cpp

@@ -4273,8 +4273,11 @@ struct llama_model_loader {
 
         llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
             const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
-            offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
+            if (tensor_idx < 0) {
+                throw std::runtime_error(format("tensor '%s' not found in the model", name));
+            }
 
+            offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
             if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
                 throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
             }
@@ -7426,7 +7429,7 @@ static bool llm_load_tensors(
                 if (flags & llama_model_loader::TENSOR_NOT_REQUIRED) {
                     return nullptr;
                 }
-                throw std::runtime_error(format("missing tensor %s", tn.str().c_str()));
+                throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
             }
 
             // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops