|
|
@@ -1084,7 +1084,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
|
}
|
|
|
break;
|
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
|
- }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Load attention parameters
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
|
|
|
+ ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
|
|
|
} break;
|
|
|
case LLM_ARCH_GPT2:
|
|
|
{
|
|
|
@@ -3392,17 +3396,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
} break;
|
|
|
case LLM_ARCH_PLAMO2:
|
|
|
{
|
|
|
+ // mamba parameters
|
|
|
const uint32_t d_conv = hparams.ssm_d_conv;
|
|
|
const uint32_t d_state = hparams.ssm_d_state;
|
|
|
const uint32_t num_heads = hparams.ssm_dt_rank;
|
|
|
const uint32_t intermediate_size = hparams.ssm_d_inner;
|
|
|
- const uint32_t head_dim = intermediate_size / num_heads;
|
|
|
- const uint32_t qk_dim = head_dim;
|
|
|
- const uint32_t v_dim = head_dim;
|
|
|
- const int64_t num_attention_heads = hparams.n_head();
|
|
|
- const int64_t q_num_heads = num_attention_heads;
|
|
|
const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
|
|
|
|
|
|
+ // attention parameters
|
|
|
+ const uint32_t qk_dim = hparams.n_embd_head_k;
|
|
|
+ const uint32_t v_dim = hparams.n_embd_head_v;
|
|
|
+
|
|
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
|
|
// output
|
|
|
@@ -3436,6 +3440,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
|
|
|
layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
|
|
|
} else {
|
|
|
+ const int64_t num_attention_heads = hparams.n_head(i);
|
|
|
+ const int64_t q_num_heads = num_attention_heads;
|
|
|
const int64_t num_key_value_heads = hparams.n_head_kv(i);
|
|
|
const int64_t k_num_heads = num_key_value_heads;
|
|
|
const int64_t v_num_heads = num_key_value_heads;
|
|
|
@@ -3444,8 +3450,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
const int64_t v_proj_dim = v_num_heads * v_dim;
|
|
|
|
|
|
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
|
|
|
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim, num_attention_heads}, 0);
|
|
|
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim, k_num_heads}, 0);
|
|
|
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
|
|
|
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
|
|
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
|
|
|
}
|
|
|
|
|
|
@@ -17611,6 +17617,7 @@ private:
|
|
|
const int64_t n_embd_head_q = hparams.n_embd_head_k;
|
|
|
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
|
|
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
|
|
+ int32_t n_head = hparams.n_head(il);
|
|
|
int32_t n_head_kv = hparams.n_head_kv(il);
|
|
|
|
|
|
const int64_t q_offset = 0;
|